Search results
Results from the WOW.Com Content Network
The intercept theorem, also known as Thales's theorem, basic proportionality theorem or side splitter theorem, is an important theorem in elementary geometry about the ratios of various line segments that are created if two rays with a common starting point are intercepted by a pair of parallels.
Figure 1: Schematic of an electrical circuit illustrating current division. Notation R T refers to the total resistance of the circuit to the right of resistor R X.. In electronics, a current divider is a simple linear circuit that produces an output current (I X) that is a fraction of its input current (I T).
Either of these functions could be negative at some points, but the triangle inequality implies that their sum is nonnegative. The strong maximum principle implies that the sum is identically zero and hence that each Busemann function is in fact (weakly) a harmonic function. Weyl's lemma implies the infinite differentiability of the Busemann ...
In mathematical analysis, Schwarz's theorem (or Clairaut's theorem on equality of mixed partials) [9] named after Alexis Clairaut and Hermann Schwarz, states that for a function : defined on a set , if is a point such that some neighborhood of is contained in and has continuous second partial derivatives on that neighborhood of , then for all i ...
The enumerations of Theorems one and two can also be found using generating functions involving simple rational expressions. The two cases are very similar; we will look at the case when , that is, Theorem two first. There is only one configuration for a single bin and any given number of objects (because the objects are not distinguished).
In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator.
The theorem may be proved for symmetric homogeneous polynomials by a double induction with respect to the number of variables n and, for fixed n, with respect to the degree of the homogeneous polynomial. The general case then follows by splitting an arbitrary symmetric polynomial into its homogeneous components (which are again symmetric).
However, if a short exact sequence of groups is right split (2.), then it need not be left split or a direct sum (neither 1. nor 3. follows): the problem is that the image of the right splitting need not be normal. What is true in this case is that B is a semidirect product, though not in general a direct product.