Search results
Results from the WOW.Com Content Network
Examples of such orbits are shown in Figures 1 and 3–5. In classical mechanics, Newton's theorem of revolving orbits identifies the type of central force needed to multiply the angular speed of a particle by a factor k without affecting its radial motion (Figures 1 and 2).
Newton derived an early theorem which attempted to explain apsidal precession. This theorem is historically notable, but it was never widely used and it proposed forces which have been found not to exist, making the theorem invalid. This theorem of revolving orbits remained largely unknown and undeveloped for over three centuries until 1995. [14]
Later, in 1686, when Newton's Principia had been presented to the Royal Society, Hooke claimed from this correspondence the credit for some of Newton's content in the Principia, and said Newton owed the idea of an inverse-square law of attraction to him – although at the same time, Hooke disclaimed any credit for the curves and trajectories ...
English: Diagram illustrating Newton's derivation of his theorem of revolving orbits. Date: 23 August 2008: Source: Own work: ... Newton's theorem of revolving orbits;
Examples include gravity and electromagnetism as described by Newton's law of universal gravitation and Coulomb's law, respectively. The problem is also important because some more complicated problems in classical physics (such as the two-body problem with forces along the line connecting the two bodies) can be reduced to a central-force problem.
English: Schematic illustrating Newton's theorem of revolving orbits. Meant to be coupled with Image:Newton revolving orbit 3rd subharmonic e0.6 240frames smaller.gif. The smaller angle θ here is 20 degrees, whereas the larger angle kθ equals 60 degrees; hence, k equals 3.
The circular restricted three-body problem [clarification needed] is a valid approximation of elliptical orbits found in the Solar System, [citation needed] and this can be visualized as a combination of the potentials due to the gravity of the two primary bodies along with the centrifugal effect from their rotation (Coriolis effects are ...
The trivial case of the angular momentum of a body in an orbit is given by = where is the mass of the orbiting object, is the orbit's frequency and is the orbit's radius.. The angular momentum of a uniform rigid sphere rotating around its axis, instead, is given by = where is the sphere's mass, is the frequency of rotation and is the sphere's radius.