Search results
Results from the WOW.Com Content Network
Newton's theorem of revolving orbits was his first attempt to understand apsidal precession quantitatively. According to this theorem, the addition of a particular type of central force—the inverse-cube force—can produce a rotating orbit; the angular speed is multiplied by a factor k , whereas the radial motion is left unchanged.
Newton derived an early theorem which attempted to explain apsidal precession. This theorem is historically notable, but it was never widely used and it proposed forces which have been found not to exist, making the theorem invalid. This theorem of revolving orbits remained largely unknown and undeveloped for over three centuries until 1995. [14]
Lastly, Newton attempts to extend the results to the case where there is atmospheric resistance, considering first (Problem 6) the effects of resistance on inertial motion in a straight line, and then (Problem 7) the combined effects of resistance and a uniform centripetal force on motion towards/away from the center in a homogeneous medium ...
The two-body problem in general relativity (or relativistic two-body problem) is the determination of the motion and gravitational field of two bodies as described by the field equations of general relativity. Solving the Kepler problem is essential to calculate the bending of light by gravity and the motion of a planet orbiting its sun.
The three-body problem is a special case of the n-body problem, which describes how n objects move under one of the physical forces, such as gravity. These problems have a global analytical solution in the form of a convergent power series, as was proven by Karl F. Sundman for n = 3 and by Qiudong Wang for n > 3 (see n-body problem for details
In classical mechanics, the central-force problem is to determine the motion of a particle in a single central potential field.A central force is a force (possibly negative) that points from the particle directly towards a fixed point in space, the center, and whose magnitude only depends on the distance of the object to the center.
Newton's reflecting quadrant; Newton number, another name for Power number; Newton's rings; Newton's rotating sphere argument, see rotating spheres; Newton scale; Newton's sphere theorem, see shell theorem; Newton's theorem of revolving orbits; Schrödinger–Newton equations; Newton (unit), the International System of Units (SI) derived unit ...
Newton's theorem of revolving orbits; Newton's shell theorem This page was last edited on 28 June 2021, at 14:38 (UTC). Text is available under the Creative ...