Search results
Results from the WOW.Com Content Network
The business model canvas is a strategic management template that is used for developing new business models and documenting existing ones. [2] [3] It offers a visual chart with elements describing a firm's or product's value proposition, [4] infrastructure, customers, and finances, [1] assisting businesses to align their activities by illustrating potential trade-offs.
Steiner tree, or Minimum spanning tree for a subset of the vertices of a graph. [2] (The minimum spanning tree for an entire graph is solvable in polynomial time.) Modularity maximization [5] Monochromatic triangle [3]: GT6 Pathwidth, [6] or, equivalently, interval thickness, and vertex separation number [7] Rank coloring; k-Chinese postman
A link/cut tree is a data structure for representing a forest, a set of rooted trees, and offers the following operations: Add a tree consisting of a single node to the forest. Given a node in one of the trees, disconnect it (and its subtree) from the tree of which it is part. Attach a node to another node as its child.
The left tree is the decision tree we obtain from using information gain to split the nodes and the right tree is what we obtain from using the phi function to split the nodes. The resulting tree from using information gain to split the nodes. Now assume the classification results from both trees are given using a confusion matrix.
A cutpoint, cut vertex, or articulation point of a graph G is a vertex that is shared by two or more blocks. The structure of the blocks and cutpoints of a connected graph can be described by a tree called the block-cut tree or BC-tree. This tree has a vertex for each block and for each articulation point of the given graph.
Thus, given a graph G = (V, E), a tree decomposition is a pair (X, T), where X = {X 1, …, X n} is a family of subsets (sometimes called bags) of V, and T is a tree whose nodes are the subsets X i, satisfying the following properties: [3] The union of all sets X i equals V. That is, each graph vertex is associated with at least one tree node.
A recursive tree is a labeled rooted tree where the vertex labels respect the tree order (i.e., if u < v for two vertices u and v, then the label of u is smaller than the label of v). In a rooted tree, the parent of a vertex v is the vertex connected to v on the path to the root; every vertex has a unique parent, except the root has no parent. [24]
It is a spanning tree of a graph G if it spans G (that is, it includes every vertex of G) and is a subgraph of G (every edge in the tree belongs to G). A spanning tree of a connected graph G can also be defined as a maximal set of edges of G that contains no cycle, or as a minimal set of edges that connect all vertices.