Search results
Results from the WOW.Com Content Network
The functions that operate on integers, such as abs, labs, div, and ldiv, are instead defined in the <stdlib.h> header (<cstdlib> header in C++). Any functions that operate on angles use radians as the unit of angle. [1] Not all of these functions are available in the C89 version of the standard. For those that are, the functions accept only ...
This is a list of operators in the C and C++ programming languages.. All listed operators are in C++ and lacking indication otherwise, in C as well. Some tables include a "In C" column that indicates whether an operator is also in C. Note that C does not support operator overloading.
What appears to the modern reader as the representing function's logical inversion, i.e. the representing function is 0 when the function R is "true" or satisfied", plays a useful role in Kleene's definition of the logical functions OR, AND, and IMPLY, [2]: 228 the bounded-[2]: 228 and unbounded-[2]: 279 ff mu operators and the CASE function.
Saturation arithmetic is a version of arithmetic in which all operations, such as addition and multiplication, are limited to a fixed range between a minimum and maximum value. If the result of an operation is greater than the maximum, it is set (" clamped ") to the maximum; if it is below the minimum, it is clamped to the minimum.
For example, in the real numbers, the squaring operation only produces non-negative numbers; the codomain is the set of real numbers, but the range is the non-negative numbers. Operations can involve dissimilar objects: a vector can be multiplied by a scalar to form another vector (an operation known as scalar multiplication ), [ 13 ] and the ...
so (−1) ⋅ x is the additive inverse of x, i.e. (−1) ⋅ x = −x, as was to be shown. The square of −1 (that is −1 multiplied by −1) equals 1. As a consequence, a product of two negative numbers is positive. For an algebraic proof of this result, start with the equation
The successor function is part of the formal language used to state the Peano axioms, which formalise the structure of the natural numbers.In this formalisation, the successor function is a primitive operation on the natural numbers, in terms of which the standard natural numbers and addition are defined. [1]
1 C (n), the indicator function of the set C ⊂ Z, for certain sets C. The indicator function 1 C (n) is multiplicative precisely when the set C has the following property for any coprime numbers a and b: the product ab is in C if and only if the numbers a and b are both themselves in C. This is the case if C is the set of squares, cubes, or k-th