enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Reaction rate constant - Wikipedia

    en.wikipedia.org/wiki/Reaction_rate_constant

    where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here ⁠ ⁠ is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...

  3. Arrhenius equation - Wikipedia

    en.wikipedia.org/wiki/Arrhenius_equation

    In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates.The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 1884 that the Van 't Hoff equation for the temperature dependence of equilibrium constants suggests such a formula for the rates of both forward and ...

  4. Rate equation - Wikipedia

    en.wikipedia.org/wiki/Rate_equation

    The constant ⁠ ⁠ is called the rate constant. The exponents, which can be fractional, [6] are called partial orders of reaction and their sum is the overall order of reaction. [7] In a dilute solution, an elementary reaction (one having a single step with a single transition state) is empirically found to obey the law of mass action

  5. Transition state theory - Wikipedia

    en.wikipedia.org/wiki/Transition_state_theory

    Using the Eyring equation, there is a straightforward relationship between ΔG ‡, first-order rate constants, and reaction half-life at a given temperature. At 298 K, a reaction with ΔG ‡ = 23 kcal/mol has a rate constant of k ≈ 8.4 × 10 −5 s −1 and a half life of t 1/2 ≈ 2.3 hours, figures that are often rounded to k ~ 10 −4 s ...

  6. Law of mass action - Wikipedia

    en.wikipedia.org/wiki/Law_of_mass_action

    The affinity constants, k + and k −, of the 1879 paper can now be recognised as rate constants. The equilibrium constant, K, was derived by setting the rates of forward and backward reactions to be equal. This also meant that the chemical affinities for the forward and backward reactions are equal. The resultant expression

  7. Dynamic equilibrium - Wikipedia

    en.wikipedia.org/wiki/Dynamic_equilibrium

    where k f is the rate constant for the forward reaction and k b is the rate constant for the backward reaction and the square brackets, […], denote concentration. If only A is present at the beginning, time t = 0 , with a concentration [A] 0 , the sum of the two concentrations, [A] t and [B] t , at time t , will be equal to [A] 0 .

  8. Getting ‘forever chemicals’ out of your tap water could ...

    www.aol.com/news/getting-forever-chemicals-tap...

    The Environmental Protection Agency is pushing to reduce exposure to “forever chemicals” over links to some types of cancer and many other health problems. ... For premium support please call ...

  9. Damköhler numbers - Wikipedia

    en.wikipedia.org/wiki/Damköhler_numbers

    Since the reaction rate determines the reaction timescale, the exact formula for the Damköhler number varies according to the rate law equation. For a general chemical reaction A → B following the Power law kinetics of n-th order, the Damköhler number for a convective flow system is defined as: