Search results
Results from the WOW.Com Content Network
ER = EPR is a conjecture in physics stating that two entangled particles (a so-called Einstein–Podolsky–Rosen or EPR pair) are connected by a wormhole (or Einstein–Rosen bridge) [1] [2] and is thought by some to be a basis for unifying general relativity and quantum mechanics into a theory of everything. [1]
The Einstein–Podolsky–Rosen (EPR) paradox is a thought experiment proposed by physicists Albert Einstein, Boris Podolsky and Nathan Rosen, which argues that the description of physical reality provided by quantum mechanics is incomplete. [1]
Electron paramagnetic resonance (EPR) or electron spin resonance (ESR) spectroscopy is a method for studying materials that have unpaired electrons.The basic concepts of EPR are analogous to those of nuclear magnetic resonance (NMR), but the spins excited are those of the electrons instead of the atomic nuclei.
In quantum information science, the Bell's states or EPR pairs are specific quantum states of two qubits that represent the simplest examples of quantum entanglement. [ 1 ] : 25 The Bell's states are a form of entangled and normalized basis vectors .
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
Pulsed electron paramagnetic resonance (EPR) is an electron paramagnetic resonance technique that involves the alignment of the net magnetization vector of the electron spins in a constant magnetic field. This alignment is perturbed by applying a short oscillating field, usually a microwave pulse.
In chemistry and physics, the exchange interaction is a quantum mechanical constraint on the states of indistinguishable particles.While sometimes called an exchange force, or, in the case of fermions, Pauli repulsion, its consequences cannot always be predicted based on classical ideas of force. [1]
Theoretical chemistry requires quantities from core physics, such as time, volume, temperature, and pressure.But the highly quantitative nature of physical chemistry, in a more specialized way than core physics, uses molar amounts of substance rather than simply counting numbers; this leads to the specialized definitions in this article.