Search results
Results from the WOW.Com Content Network
The gas constant occurs in the ideal gas law: = = where P is the absolute pressure, V is the volume of gas, n is the amount of substance, m is the mass, and T is the thermodynamic temperature. R specific is the mass-specific gas constant. The gas constant is expressed in the same unit as molar heat.
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...
The following table lists the Van der Waals constants (from the Van der Waals equation) for a number of common gases and volatile liquids. [ 1 ] To convert from L 2 b a r / m o l 2 {\displaystyle \mathrm {L^{2}bar/mol^{2}} } to L 2 k P a / m o l 2 {\displaystyle \mathrm {L^{2}kPa/mol^{2}} } , multiply by 100.
Thermodynamic heat pump cycles or refrigeration cycles are the conceptual and mathematical models for heat pump, air conditioning and refrigeration systems. [1] A heat pump is a mechanical system that transmits heat from one location (the "source") at a certain temperature to another location (the "sink" or "heat sink") at a higher temperature. [2]
Technical literature can be confusing because many authors fail to explain whether they are using the ideal gas constant R, or the specific gas constant R s. The relationship between the two constants is R s = R / m, where m is the molecular mass of the gas. The US Standard Atmosphere (USSA) uses 8.31432 m 3 ·Pa/(mol·K) as the value of R.
A representative pressure–volume diagram for a refrigeration cycle. Vapour-compression refrigeration or vapor-compression refrigeration system (VCRS), [1] in which the refrigerant undergoes phase changes, is one of the many refrigeration cycles and is the most widely used method for air conditioning of buildings and automobiles.
If one sets out to determine the specific volume of an ideal gas, such as super heated steam, using the equation ν = RT/P, where pressure is 2500 lbf/in 2, R is 0.596, temperature is 1960 °R. In that case, the specific volume would equal 0.4672 in 3 /lb.
Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension General heat/thermal capacity C = / J⋅K −1: ML 2 T −2 Θ −1: Heat capacity (isobaric)