Search results
Results from the WOW.Com Content Network
For example, the NACA 2412 airfoil has a maximum camber of 2% located 40% (0.4 chords) from the leading edge with a maximum thickness of 12% of the chord. The NACA 0015 airfoil is symmetrical, the 00 indicating that it has no camber. The 15 indicates that the airfoil has a 15% thickness to chord length ratio: it is 15% as thick as it is long.
NACA experience provided a model for World War II research, the postwar government laboratories, and NACA's successor, the National Aeronautics and Space Administration (NASA). NACA also participated in development of the first aircraft to fly to the "edge of space", North American's X-15. NACA airfoils are still used on modern aircraft.
Prior submerged inlet experiments showed poor pressure recovery due to the slow-moving boundary layer entering the inlet. The NACA design is believed to work because the combination of the gentle ramp angle and the curvature profile of the walls creates counter-rotating vortices which deflect the boundary layer away from the inlet and draws in the faster moving air, while avoiding the form ...
Clark Y is the name of a particular airfoil profile, widely used in general purpose aircraft designs, and much studied in aerodynamics over the years. The profile was designed in 1922 by Virginius E. Clark using thickness distribution of the German-developed Goettingen 398 airfoil. [1]
The U.S. National Advisory Committee for Aeronautics (NACA) (1918-1958) — reestablished as NASA in 1958. The main article for this category is National Advisory Committee for Aeronautics . Subcategories
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
Like all Lippisch deltas it had a thick wing with a blunt leading edge. A strip was fixed along the leading edge to simulate a sharp profile. This created the vortices seen on the model and greatly increased the lift. The origin of modern vortex lift theory (as seen most famously on Concorde) may thus be traced to the NACA study and the ...
The NACA cowling enhanced speed through drag reduction while improving engine cooling. The cowling consists of a symmetric, circular airfoil that is wrapped around the engine. In a normal planar airfoil, like a wing, the difference in airspeeds, and their associated changes in pressure, on the top and bottom surfaces, enhances lift.