enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Handshaking lemma - Wikipedia

    en.wikipedia.org/wiki/Handshaking_lemma

    For graphs that are allowed to contain loops connecting a vertex to itself, a loop should be counted as contributing two units to the degree of its endpoint for the purposes of the handshaking lemma. [2] Then, the handshaking lemma states that, in every finite graph, there must be an even number of vertices for which ⁡ is an odd number. [1]

  3. Regular graph - Wikipedia

    en.wikipedia.org/wiki/Regular_graph

    From the handshaking lemma, a k-regular graph with odd k has an even number of vertices. A theorem by Nash-Williams says that every k ‑regular graph on 2k + 1 vertices has a Hamiltonian cycle. Let A be the adjacency matrix of a graph. Then the graph is regular if and only if = (, …,) is an eigenvector of A. [2]

  4. Directed graph - Wikipedia

    en.wikipedia.org/wiki/Directed_graph

    In formal terms, a directed graph is an ordered pair G = (V, A) where [1]. V is a set whose elements are called vertices, nodes, or points;; A is a set of ordered pairs of vertices, called arcs, directed edges (sometimes simply edges with the corresponding set named E instead of A), arrows, or directed lines.

  5. Glossary of graph theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_graph_theory

    The total degree is the sum of the degrees of all vertices; by the handshaking lemma it is an even number. The degree sequence is the collection of degrees of all vertices, in sorted order from largest to smallest. In a directed graph, one may distinguish the in-degree (number of incoming edges) and out-degree (number of outgoing edges). [2] 2.

  6. Template : Did you know nominations/Handshaking lemma

    en.wikipedia.org/.../Handshaking_lemma

    Language links are at the top of the page across from the title.

  7. Category:Lemmas in graph theory - Wikipedia

    en.wikipedia.org/wiki/Category:Lemmas_in_graph...

    Pages in category "Lemmas in graph theory" The following 5 pages are in this category, out of 5 total. ... Handshaking lemma; K. Kőnig's lemma; S. Szemerédi ...

  8. PPA (complexity) - Wikipedia

    en.wikipedia.org/wiki/PPA_(complexity)

    Introduced by Christos Papadimitriou in 1994 [1] (page 528), PPA is a subclass of TFNP. It is a class of search problems that can be shown to be total by an application of the handshaking lemma: any undirected graph that has a vertex whose degree is an odd number must have some other vertex whose degree is an odd number. This observation means ...

  9. Erdős–Gallai theorem - Wikipedia

    en.wikipedia.org/wiki/Erdős–Gallai_theorem

    The Erdős–Gallai theorem is a result in graph theory, a branch of combinatorial mathematics.It provides one of two known approaches to solving the graph realization problem, i.e. it gives a necessary and sufficient condition for a finite sequence of natural numbers to be the degree sequence of a simple graph.