Search results
Results from the WOW.Com Content Network
Strong acids catalyze the reaction by donating a proton to the carbonyl group, thus making it a more potent electrophile. Bases catalyze the reaction by removing a proton from the alcohol, thus making it more nucleophilic. The reaction can also be accomplished with the help of enzymes, particularly lipases (one example is the lipase E.C.3.1.1.3 ...
The reaction was first described by Emil Fischer and Arthur Speier in 1895. [1] Most carboxylic acids are suitable for the reaction, but the alcohol should generally be primary or secondary. Tertiary alcohols are prone to elimination. Contrary to common misconception found in organic chemistry textbooks, phenols can also be esterified to give ...
Esterification is the general name for a chemical reaction in which two reactants (typically an alcohol and an acid) form an ester as the reaction product. Esters are common in organic chemistry and biological materials, and often have a pleasant characteristic, fruity odor. This leads to their extensive use in the fragrance and flavor industry.
An ester of carboxylic acid.R stands for any group (organic or inorganic) and R′ stands for organyl group.. In chemistry, an ester is a compound derived from an acid (organic or inorganic) in which the hydrogen atom (H) of at least one acidic hydroxyl group (−OH) of that acid is replaced by an organyl group (−R).
The most commonly used alcohol is methanol, producing fatty acid methyl esters (FAME). When ethanol is used fatty acid ethyl esters (FAEE) are created. Other alcohols used for the production of biodiesel include butanol and isopropanol. Fatty acid ethyl esters are biomarkers for the consumption of ethanol (alcoholic beverages). [1] [2] [3]
The Yamaguchi esterification is the chemical reaction of an aliphatic carboxylic acid and 2,4,6-trichlorobenzoyl chloride (TCBC, Yamaguchi reagent) to form a mixed anhydride which, upon reaction with an alcohol in the presence of stoichiometric amount of DMAP, produces the desired ester. It was first reported by Masaru Yamaguchi et al. in 1979 ...
The hydroxyl group in the alcohol attacks its host molecule through intermolecular nucleophilic substitution, and at the same time, carboxylate anion, derived from 2-methyl-6-nitrobenzoic acid, acts as a deprotonation agent, promoting the progression of the esterification and producing the desired carboxylic ester. To balance the reaction, each ...
The classic example of a dehydration reaction is the Fischer esterification, which involves treating a carboxylic acid with an alcohol to give an ester RCO 2 H + R′OH ⇌ RCO 2 R′ + H 2 O. Often such reactions require the presence of a dehydrating agent, i.e. a substance that reacts with water.