Search results
Results from the WOW.Com Content Network
In computer science, the two-way string-matching algorithm is a string-searching algorithm, discovered by Maxime Crochemore and Dominique Perrin in 1991. [1] It takes a pattern of size m, called a “needle”, preprocesses it in linear time O(m), producing information that can then be used to search for the needle in any “haystack” string, taking only linear time O(n) with n being the ...
Different approximate matchers impose different constraints. Some matchers use a single global unweighted cost, that is, the total number of primitive operations necessary to convert the match to the pattern. For example, if the pattern is coil, foil differs by one substitution, coils by one insertion, oil by one deletion, and foal by two ...
A simple and inefficient way to see where one string occurs inside another is to check at each index, one by one. First, we see if there is a copy of the needle starting at the first character of the haystack; if not, we look to see if there's a copy of the needle starting at the second character of the haystack, and so forth.
Here, 0 is a single value pattern. Now, whenever f is given 0 as argument the pattern matches and the function returns 1. With any other argument, the matching and thus the function fail. As the syntax supports alternative patterns in function definitions, we can continue the definition extending it to take more generic arguments:
For example, . is a very general pattern, [a-z] (match all lower case letters from 'a' to 'z') is less general and b is a precise pattern (matches just 'b'). The metacharacter syntax is designed specifically to represent prescribed targets in a concise and flexible way to direct the automation of text processing of a variety of input data, in a ...
In mathematics, economics, and computer science, the stable marriage problem (also stable matching problem) is the problem of finding a stable matching between two equally sized sets of elements given an ordering of preferences for each element.
Fuzzy matching is a technique used in computer-assisted translation as a special case of record linkage.It works with matches that may be less than 100% perfect when finding correspondences between segments of a text and entries in a database of previous translations.
The following figure shows examples of maximal matchings (red) in three graphs. A maximum matching (also known as maximum-cardinality matching [2]) is a matching that contains the largest possible number of edges. There may be many maximum matchings. The matching number of a graph G is the size of a maximum matching. Every maximum matching is ...