Search results
Results from the WOW.Com Content Network
A Fibonacci prime is a Fibonacci number that is prime. The first few are: [46] 2, 3, 5, 13, 89, 233, 1597, 28657, 514229, ... Fibonacci primes with thousands of digits have been found, but it is not known whether there are infinitely many. [47] F kn is divisible by F n, so, apart from F 4 = 3, any Fibonacci prime must have a prime index.
It is sometimes erroneously stated that spiral galaxies and nautilus shells get wider in the pattern of a golden spiral, and hence are related to both φ and the Fibonacci series. [3] In truth, many mollusk shells including nautilus shells exhibit logarithmic spiral growth, but at a variety of angles usually distinctly different from that of ...
The golden spiral is a logarithmic spiral that grows outward by a factor of the golden ratio for every 90 degrees of rotation (pitch angle about 17.03239 degrees). It can be approximated by a "Fibonacci spiral", made of a sequence of quarter circles with radii proportional to Fibonacci numbers.
In 1917, D'Arcy Wentworth Thompson published On Growth and Form; his description of phyllotaxis and the Fibonacci sequence, the mathematical relationships in the spiral growth patterns of plants showed that simple equations could describe the spiral growth patterns of animal horns and mollusc shells. [16]
Spirals which do not fit into this scheme of the first 5 examples: A Cornu spiral has two asymptotic points. The spiral of Theodorus is a polygon. The Fibonacci Spiral consists of a sequence of circle arcs. The involute of a circle looks like an Archimedean, but is not: see Involute#Examples.
Both the Fibonacci sequence and the sequence of Lucas numbers can be used to generate approximate forms of the golden spiral (which is a special form of a logarithmic spiral) using quarter-circles with radii from these sequences, differing only slightly from the true golden logarithmic spiral. Fibonacci spiral is generally the term used for ...
For <, spiral-ring pattern; =, regular spiral; >, loose spiral. R is the distance of spiral starting point (0, R) to the center. The calculated x and y have to be rotated backward by for plotting. [13] [predatory publisher]
The shape of the spirals depends on the growth of the elements generated sequentially. In mature-disc phyllotaxis, when all the elements are the same size, the shape of the spirals is that of Fermat spirals—ideally. That is because Fermat's spiral traverses equal annuli in equal turns. The full model proposed by H. Vogel in 1979 [5] is