Search results
Results from the WOW.Com Content Network
Spherical trigonometry is the branch of spherical geometry that deals with the metrical relationships between the sides and angles of spherical triangles, traditionally expressed using trigonometric functions. On the sphere, geodesics are great circles. Spherical trigonometry is of great importance for calculations in astronomy, geodesy, and ...
In spherical trigonometry, the law of cosines (also called the cosine rule for sides [1]) is a theorem relating the sides and angles of spherical triangles, analogous to the ordinary law of cosines from plane trigonometry. Spherical triangle solved by the law of cosines. Given a unit sphere, a "spherical triangle" on the surface of the sphere ...
The proofs given in this article use these definitions, and thus apply to non-negative angles not greater than a right angle. For greater and negative angles , see Trigonometric functions . Other definitions, and therefore other proofs are based on the Taylor series of sine and cosine , or on the differential equation f ″ + f = 0 ...
Spherical trigonometry was studied by early Greek mathematicians such as Theodosius of Bithynia, a Greek astronomer and mathematician who wrote Spherics, a book on the geometry of the sphere, [2] and Menelaus of Alexandria, who wrote a book on spherical trigonometry called Sphaerica and developed Menelaus' theorem. [3] [4]
The excess, or area, of small triangles is very small. For example, consider an equilateral spherical triangle with sides of 60 km on a spherical Earth of radius 6371 km; the side corresponds to an angular distance of 60/6371=.0094, or approximately 10 −2 radians (subtending an angle of 0.57
The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes.Important in navigation, it is a special case of a more general formula in spherical trigonometry, the law of haversines, that relates the sides and angles of spherical triangles.
Fig. 6 – A short proof using trigonometry for the case of an acute angle. Using more trigonometry, the law of cosines can be deduced by using the Pythagorean theorem only once. In fact, by using the right triangle on the left hand side of Fig. 6 it can be shown that:
In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles.According to the law, = = =, where a, b, and c are the lengths of the sides of a triangle, and α, β, and γ are the opposite angles (see figure 2), while R is the radius of the triangle's circumcircle.