Search results
Results from the WOW.Com Content Network
For example, for the array of values [−2, 1, −3, 4, −1, 2, 1, −5, 4], the contiguous subarray with the largest sum is [4, −1, 2, 1], with sum 6. Some properties of this problem are: If the array contains all non-negative numbers, then the problem is trivial; a maximum subarray is the entire array.
In the limit as approaches infinity, the Baik-Deift-Johansson theorem says, that the length of the longest increasing subsequence of a randomly permuted sequence of items has a distribution approaching the Tracy–Widom distribution, the distribution of the largest eigenvalue of a random matrix in the Gaussian unitary ensemble.
Algorithm LargestNumber Input: A list of numbers L. Output: The largest number in the list L. if L.size = 0 return null largest ← L[0] for each item in L, do if item > largest, then largest ← item return largest "←" denotes assignment. For instance, "largest ← item" means that the value of largest changes to the value of item.
This is the original definition for maplist, mapping a function over successive rest lists: maplist[x;f] = [null[x] -> NIL;T -> cons[f[x];maplist[cdr[x];f]]] The function maplist is still available in newer Lisps like Common Lisp, [5] though functions like mapcar or the more generic map would be preferred.
It looks at each character as the center of a palindrome and loops to determine the largest palindrome with that center. The loop at the center of the function only works for palindromes where the length is an odd number. The function works for even-length palindromes by modifying the input string.
One can find the lengths and starting positions of the longest common substrings of and in (+) time with the help of a generalized suffix tree. A faster algorithm can be achieved in the word RAM model of computation if the size σ {\displaystyle \sigma } of the input alphabet is in 2 o ( log ( n + m ) ) {\displaystyle 2^{o\left({\sqrt {\log ...
A maximum clique is a clique that includes the largest possible number of vertices. The clique number ω(G) is the number of vertices in a maximum clique of G. [1] Several closely related clique-finding problems have been studied. [14] In the maximum clique problem, the input is an undirected graph, and the output is a maximum clique in the graph.
Specific applications of search algorithms include: Problems in combinatorial optimization, such as: . The vehicle routing problem, a form of shortest path problem; The knapsack problem: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as ...