Search results
Results from the WOW.Com Content Network
Iron overload (also known as haemochromatosis or hemochromatosis) is the abnormal and increased accumulation of total iron in the body, leading to organ damage. [1] The primary mechanism of organ damage is oxidative stress , as elevated intracellular iron levels increase free radical formation via the Fenton reaction .
Haemochromatosis is protean in its manifestations, i.e., often presenting with signs or symptoms suggestive of other diagnoses that affect specific organ systems.Many of the signs and symptoms below are uncommon, and most patients with the hereditary form of haemochromatosis do not show any overt signs of disease nor do they have premature morbidity, if they are diagnosed early, but, more ...
Iron deficiency, or sideropenia, is the state in which a body lacks enough iron to supply its needs. Iron is present in all cells in the human body and has several vital functions, such as carrying oxygen to the tissues from the lungs as a key component of the hemoglobin protein, acting as a transport medium for electrons within the cells in the form of cytochromes, and facilitating oxygen ...
Type 4 hemochromatosis is caused by mutations of the SLC40A1 gene, located on the long arm of chromosome 2, specifically at 2q32.2. The SLC40A1 gene encodes ferroportin, a protein responsible for exporting iron from cells in the intestine, liver, spleen, and kidney, as well as from reticuloendothelial macrophages and the placenta.
Juvenile hemochromatosis can be caused by inheriting two mutated copies (), one from each parent, of the genes for the proteins hemojuvelin (HFE2/HJV) or hepcidin (HAMP), and the disease can be subdivided into hemochromatosis types 2A and 2B according to which gene/protein is affected.
Haemochromatosis type 3 is a type of iron overload disorder associated with deficiencies in transferrin receptor 2. It exhibits an autosomal recessive inheritance pattern. [2] [3] [4] The first confirmed case was diagnosed in 1865 by French doctor Trousseau. Later in 1889, the German doctor von Recklinghausen indicated that the liver contains ...
Hemoglobin, the oxygen-carrying molecule in a red blood cell, contains iron.The body has limited ways to store and remove iron. When red blood cells (RBCs) die, they are consumed by macrophages.
The protein encoded by this gene is an integral membrane protein that is similar to MHC class I-type proteins and associates with beta-2 microglobulin (beta2M). It is thought that this protein functions to regulate circulating iron uptake by regulating the interaction of the transferrin receptor with transferrin.