enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Unique factorization domain - Wikipedia

    en.wikipedia.org/wiki/Unique_factorization_domain

    Formally, a unique factorization domain is defined to be an integral domain R in which every non-zero element x of R which is not a unit can be written as a finite product of irreducible elements p i of R: x = p 1 p 2 ⋅⋅⋅ p n with n ≥ 1. and this representation is unique in the following sense: If q 1, ..., q m are irreducible elements ...

  3. Quadratic integer - Wikipedia

    en.wikipedia.org/wiki/Quadratic_integer

    However, there is a unique factorization for ideals, which is expressed by the fact that every ring of algebraic integers is a Dedekind domain. Being the simplest examples of algebraic integers, quadratic integers are commonly the starting examples of most studies of algebraic number theory. [4]

  4. Gaussian integer - Wikipedia

    en.wikipedia.org/wiki/Gaussian_integer

    As the Gaussian integers form a principal ideal domain, they also form a unique factorization domain. This implies that a Gaussian integer is irreducible (that is, it is not the product of two non-units) if and only if it is prime (that is, it generates a prime ideal). The prime elements of Z[i] are also known as Gaussian primes. An associate ...

  5. Fundamental theorem of arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    This theorem is one of the main reasons why 1 is not considered a prime number: if 1 were prime, then factorization into primes would not be unique; for example, = = = … The theorem generalizes to other algebraic structures that are called unique factorization domains and include principal ideal domains , Euclidean domains , and polynomial ...

  6. Gauss's lemma (polynomials) - Wikipedia

    en.wikipedia.org/wiki/Gauss's_lemma_(polynomials)

    In the case of coefficients in a unique factorization domain R, "rational numbers" must be replaced by "field of fractions of R". This implies that, if R is either a field, the ring of integers, or a unique factorization domain, then every polynomial ring (in one or several indeterminates) over R is a unique factorization domain. Another ...

  7. Dedekind domain - Wikipedia

    en.wikipedia.org/wiki/Dedekind_domain

    A Dedekind domain can also be characterized in terms of homological algebra: an integral domain is a Dedekind domain if and only if it is a hereditary ring; that is, every submodule of a projective module over it is projective. Similarly, an integral domain is a Dedekind domain if and only if every divisible module over it is injective. [3]

  8. Noetherian ring - Wikipedia

    en.wikipedia.org/wiki/Noetherian_ring

    A unique factorization domain is not necessarily a Noetherian ring. It does satisfy a weaker condition: the ascending chain condition on principal ideals. A ring of polynomials in infinitely-many variables is an example of a non-Noetherian unique factorization domain. A valuation ring is not Noetherian unless it is a principal ideal domain.

  9. GCD domain - Wikipedia

    en.wikipedia.org/wiki/GCD_domain

    Unlike principal ideal domains (where every ideal is principal), a Bézout domain need not be a unique factorization domain; for instance the ring of entire functions is a non-atomic Bézout domain, and there are many other examples. An integral domain is a Prüfer GCD domain if and only if it is a Bézout domain. [3]