Search results
Results from the WOW.Com Content Network
An application of the second isomorphism theorem identifies projective linear groups: for example, the group on the complex projective line starts with setting = (), the group of invertible 2 × 2 complex matrices, = (), the subgroup of determinant 1 matrices, and the normal subgroup of scalar matrices = {():}, we have = {}, where is ...
This is the first of two theorems (see Noether's second theorem) published by the mathematician Emmy Noether in 1918. [1] The action of a physical system is the integral over time of a Lagrangian function, from which the system's behavior can be determined by the principle of least action .
Her work on differential invariants in the calculus of variations, Noether's theorem, has been called "one of the most important mathematical theorems ever proved in guiding the development of modern physics". [11] In the second epoch (1920–1926), she began work that "changed the face of [abstract] algebra". [12]
K) is a Chern number and the self-intersection number of the canonical class K, and e = c 2 is the topological Euler characteristic. It can be used to replace the term χ(0) in the Riemann–Roch theorem with topological terms; this gives the Hirzebruch–Riemann–Roch theorem for surfaces.
[1] [2] [3] In classical mechanics for instance, in the action formulation, extremal solutions to the variational principle are on shell and the Euler–Lagrange equations give the on-shell equations. Noether's theorem regarding differentiable symmetries of physical action and conservation laws is another on-shell theorem.
The condition to be a special divisor D can be formulated in sheaf cohomology terms, as the non-vanishing of the H 1 cohomology of the sheaf of sections of the invertible sheaf or line bundle associated to D. This means that, by the Riemann–Roch theorem, the H 0 cohomology or space of holomorphic sections is larger than expected.
Also, conjugate variables are related by Noether's theorem, which states that if the laws of physics are invariant with respect to a change in one of the conjugate variables, then the other conjugate variable will not change with time (i.e. it will be conserved). Conjugate variables in thermodynamics are widely used.
Envelope theorem (calculus of variations) Isoperimetric theorem (curves, calculus of variations) Minimax theorem (game theory) Mountain pass theorem (calculus of variations) Noether's second theorem (calculus of variations, physics) Parthasarathy's theorem (game theory) Sion's minimax theorem (game theory) Tonelli's theorem (functional analysis)