enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lower mantle - Wikipedia

    en.wikipedia.org/wiki/Lower_mantle

    The lower mantle, historically also known as the mesosphere, represents approximately 56% of Earth's total volume, and is the region from 660 to 2900 km below Earth's surface; between the transition zone and the outer core. [1]

  3. Internal structure of Earth - Wikipedia

    en.wikipedia.org/wiki/Internal_structure_of_Earth

    The pressure at the bottom of the mantle is ≈140 GPa (1.4 Matm). [24] The mantle is composed of silicate rocks richer in iron and magnesium than the overlying crust. [25] Although solid, the mantle's extremely hot silicate material can flow over very long timescales. [26] Convection of the mantle propels the motion of the tectonic plates in the

  4. Liquidus and solidus - Wikipedia

    en.wikipedia.org/wiki/Liquidus_and_solidus

    The upper curve is the line of liquidus, and the lower curve is the line of solidus. In chemistry , materials science , and physics , the liquidus temperature specifies the temperature above which a material is completely liquid, [ 2 ] and the maximum temperature at which crystals can co-exist with the melt in thermodynamic equilibrium .

  5. Earth - Wikipedia

    en.wikipedia.org/wiki/Earth

    Beneath the mantle, an extremely low viscosity liquid outer core lies above a solid inner core. [132] Earth's inner core may be rotating at a slightly higher angular velocity than the remainder of the planet, advancing by 0.1–0.5° per year, although both somewhat higher and much lower rates have also been proposed. [ 133 ]

  6. Lithosphere–asthenosphere boundary - Wikipedia

    en.wikipedia.org/wiki/Lithosphere–asthenosphere...

    A diagram of the internal structure of Earth. The lithosphere consists of the crust and upper solid mantle (lithospheric mantle). The green dashed line marks the LAB. The lithosphere–asthenosphere boundary (referred to as the LAB by geophysicists) represents a mechanical difference between layers in Earth's inner structure.

  7. Earth's inner core - Wikipedia

    en.wikipedia.org/wiki/Earth's_inner_core

    Of particular interest are the so-called "PKiKP" waves—pressure waves (P) that start near the surface, cross the mantle-core boundary, travel through the core (K), are reflected at the inner core boundary (i), cross the liquid core (K) again, cross back into the mantle, and are detected as pressure waves (P) at the surface.

  8. Transition zone (Earth) - Wikipedia

    en.wikipedia.org/wiki/Transition_zone_(Earth)

    The transition zone is the part of Earth's mantle that is located between the lower and the upper mantle, most strictly between the seismic-discontinuity depths of about 410 to 660 kilometres (250 to 410 mi), but more broadly defined as the zone encompassing those discontinuities, i.e., between about 300 and 850 kilometres (190 and 530 mi) depth. [1]

  9. Convection - Wikipedia

    en.wikipedia.org/wiki/Convection

    Mantle convection is the result of a thermal gradient: the lower mantle is hotter than the upper mantle, and is therefore less dense. This sets up two primary types of instabilities. In the first type, plumes rise from the lower mantle, and corresponding unstable regions of lithosphere drip back into the mantle.