Search results
Results from the WOW.Com Content Network
In thermodynamics, the Joule–Thomson effect (also known as the Joule–Kelvin effect or Kelvin–Joule effect) describes the temperature change of a real gas or liquid (as differentiated from an ideal gas) when it is expanding; typically caused by the pressure loss from flow through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment.
Therefore, the amount of mass that can be lifted by helium in air at sea level is: (1.292 - 0.178) kg/m 3 = 1.114 kg/m 3. and the buoyant force for one m 3 of helium in air at sea level is: 1 m 3 × 1.114 kg/m 3 × 9.8 N/kg= 10.9 N. Thus hydrogen's additional buoyancy compared to helium is: 11.8 / 10.9 ≈ 1.08, or approximately 8.0%
The gas balloon or Charlière is inflated with a gas of lower molecular weight than the ambient atmosphere; most gas balloons operate with the internal pressure of the gas the same as the pressure of the surrounding atmosphere; a superpressure balloon can operate with the lifting gas at pressure that exceeds that of the surrounding air, with ...
Helium also has a very low boiling point (-268.9°C or -452°F), allowing it to remain a gas even in super-cold environments, an important feature because many rocket fuels are stored in that ...
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...
A super pressure balloon in flight Flight profile of super-pressure balloons versus zero-pressure balloons. A superpressure balloon (SPB) is a style of aerostatic balloon where the volume of the balloon is kept relatively constant in the face of changes in ambient pressure outside the balloon, and the temperature of the contained lifting gas.
The relative density of an aerostat as a whole is lower than that of the surrounding atmospheric air (hence the name "lighter-than-air"). Its main component is one or more gas capsules made of lightweight skins, containing a lifting gas (hot air, or any gas with lower density than air, typically hydrogen or helium) that displaces a large volume ...
As temperature and pressure increase along the coexistence curve, the gas becomes more like a liquid and the liquid becomes more like a gas. At the critical point, the two are the same. So for temperatures above the critical temperature (126.2 K), there is no phase transition; as pressure increases the gas gradually transforms into something ...