Search results
Results from the WOW.Com Content Network
Plastic deformation of a thin metal sheet. Flow plasticity is a solid mechanics theory that is used to describe the plastic behavior of materials. [1] Flow plasticity theories are characterized by the assumption that a flow rule exists that can be used to determine the amount of plastic deformation in the material.
The two plastic limit theorems apply to any elastic-perfectly plastic body or assemblage of bodies. Lower limit theorem: If an equilibrium distribution of stress can be found which balances the applied load and nowhere violates the yield criterion, the body (or bodies) will not fail, or will be just at the point of failure. [2] Upper limit theorem:
Depending on the type of material, size and geometry of the object, and the forces applied, various types of deformation may result. The image to the right shows the engineering stress vs. strain diagram for a typical ductile material such as steel.
A forming limit diagram, also known as a forming limit curve, is used in sheet metal forming for predicting forming behavior of sheet metal. [1] [2] The diagram attempts to provide a graphical description of material failure tests, such as a punched dome test. In order to determine whether a given region has failed, a mechanical test is performed.
The Lankford coefficient (also called Lankford value, R-value, or plastic strain ratio) [1] is a measure of the plastic anisotropy of a rolled sheet metal. This scalar quantity is used extensively as an indicator of the formability of recrystallized low-carbon steel sheets.
At the same strain, the higher the rate of strain the higher the stress; A change in the rate of strain during the test results in an immediate change in the stress–strain curve. The concept of a plastic yield limit is no longer strictly applicable.
For elastomers, such as rubber, the elastic limit is much larger than the proportionality limit. Also, precise strain measurements have shown that plastic strain begins at very low stresses. [11] [12] Yield point The point in the stress-strain curve at which the curve levels off and plastic deformation begins to occur. [13]
However, the shear strain is constant across the thickness of the plate. This cannot be accurate since the shear stress is known to be parabolic even for simple plate geometries. To account for the inaccuracy in the shear strain, a shear correction factor ( κ {\displaystyle \kappa } ) is applied so that the correct amount of internal energy is ...