Search results
Results from the WOW.Com Content Network
The eccentric anomaly E is one of the angles of a right triangle with one vertex at the center of the ellipse, its adjacent side lying on the major axis, having hypotenuse a (equal to the semi-major axis of the ellipse), and opposite side (perpendicular to the major axis and touching the point P′ on the auxiliary circle of radius a) that ...
A zero element (or an absorbing/annihilating element) is an element z such that for all s in S, z • s = s • z = z. This notion can be refined to the notions of left zero, where one requires only that z • s = z, and right zero, where s • z = z. [2]
If the left and right derivatives are equal, then they have the same value as the usual ("bidirectional") derivative. One can also define a symmetric derivative , which equals the arithmetic mean of the left and right derivatives (when they both exist), so the symmetric derivative may exist when the usual derivative does not.
The red section on the right, d, is the difference between the lengths of the hypotenuse, H, and the adjacent side, A.As is shown, H and A are almost the same length, meaning cos θ is close to 1 and θ 2 / 2 helps trim the red away.
Similar right triangles illustrating the tangent and secant trigonometric functions Trigonometric functions and their reciprocals on the unit circle. The Pythagorean theorem applied to the blue triangle shows the identity 1 + cot 2 θ = csc 2 θ, and applied to the red triangle shows that 1 + tan 2 θ = sec 2 θ.
Since triangle OAD lies completely inside the sector, which in turn lies completely inside triangle OCD, we have sin θ < θ < tan θ . {\displaystyle \sin \theta <\theta <\tan \theta .} This geometric argument relies on definitions of arc length and area , which act as assumptions, so it is rather a condition imposed in construction of ...
An element that is a left or a right zero divisor is simply called a zero divisor. [2] An element a that is both a left and a right zero divisor is called a two-sided zero divisor (the nonzero x such that ax = 0 may be different from the nonzero y such that ya = 0). If the ring is commutative, then the left and right zero divisors are the same.
The circle on the right (blue and violet) is (), with the blue being (). The violet is the mutual information I ( X ; Y ) {\displaystyle \operatorname {I} (X;Y)} . In probability theory and information theory , the mutual information ( MI ) of two random variables is a measure of the mutual dependence between the two variables.