enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Radio propagation - Wikipedia

    en.wikipedia.org/wiki/Radio_propagation

    Radio propagation is the behavior of radio waves as they travel, or are propagated, from one point to another in vacuum, or into various parts of the atmosphere. [1]: 26‑1 As a form of electromagnetic radiation, like light waves, radio waves are affected by the phenomena of reflection, refraction, diffraction, absorption, polarization, and scattering. [2]

  3. Computation of radiowave attenuation in the atmosphere

    en.wikipedia.org/wiki/Computation_of_radiowave...

    Derivation of the optical invariant, a measure of the light propagating through an optical system.. The document ITU-R pp. 676–78 of the ITU-R section considers the atmosphere as being divided into spherical homogeneous layers; each layer has a constant refraction index.

  4. Atmospheric diffraction - Wikipedia

    en.wikipedia.org/wiki/Atmospheric_diffraction

    Optical atmospheric diffraction; Radio wave diffraction is the scattering of radio frequency or lower frequencies from the Earth's ionosphere, resulting in the ability to achieve greater distance radio broadcasting. Sound wave diffraction is the bending of sound waves, as the sound travels around edges of geometric objects. This produces the ...

  5. Radio wave - Wikipedia

    en.wikipedia.org/wiki/Radio_wave

    The study of radio propagation, how radio waves move in free space and over the surface of the Earth, is vitally important in the design of practical radio systems. Radio waves passing through different environments experience reflection, refraction, polarization, diffraction, and absorption.

  6. Free-space path loss - Wikipedia

    en.wikipedia.org/wiki/Free-space_path_loss

    In telecommunications, the free-space path loss (FSPL) (also known as free-space loss, FSL) is the attenuation of radio energy between the feedpoints of two antennas that results from the combination of the receiving antenna's capture area plus the obstacle-free, line-of-sight (LoS) path through free space (usually air). [1]

  7. Diffraction - Wikipedia

    en.wikipedia.org/wiki/Diffraction

    Diffraction is the same physical effect as interference, but interference is typically applied to superposition of a few waves and the term diffraction is used when many waves are superposed. [1]: 433 Italian scientist Francesco Maria Grimaldi coined the word diffraction and was the first to record accurate observations of the phenomenon in 1660.

  8. Earth–ionosphere waveguide - Wikipedia

    en.wikipedia.org/wiki/Earth–ionosphere_waveguide

    The Earth–ionosphere waveguide [1] is the phenomenon in which certain radio waves can propagate in the space between the ground and the boundary of the ionosphere. Because the ionosphere contains charged particles, it can behave as a conductor. The earth operates as a ground plane, and the resulting cavity behaves as a large waveguide.

  9. Dipole antenna - Wikipedia

    en.wikipedia.org/wiki/Dipole_antenna

    German physicist Heinrich Hertz first demonstrated the existence of radio waves in 1887 using what we now know as a dipole antenna (with capacitative end-loading). On the other hand, Guglielmo Marconi empirically found that he could just ground the transmitter (or one side of a transmission line, if used) dispensing with one half of the antenna, thus realizing the vertical or monopole antenna.