enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Photosynthesis - Wikipedia

    en.wikipedia.org/wiki/Photosynthesis

    Photosynthesis (/ ˌ f oʊ t ə ˈ s ɪ n θ ə s ɪ s / FOH-tə-SINTH-ə-sis) [1] is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their metabolism.

  3. Photosynthetic efficiency - Wikipedia

    en.wikipedia.org/wiki/Photosynthetic_efficiency

    28.2% (sunlight energy collected by chlorophyll) → 68% is lost in conversion of ATP and NADPH to d-glucose, leaving; 9% (collected as sugar) → 35–40% of sugar is recycled/consumed by the leaf in dark and photo-respiration, leaving; 5.4% net leaf efficiency. Many plants lose much of the remaining energy on growing roots.

  4. C3 carbon fixation - Wikipedia

    en.wikipedia.org/wiki/C3_carbon_fixation

    C 3 carbon fixation occurs in all plants as the first step of the Calvin–Benson cycle. (In C 4 and CAM plants, carbon dioxide is drawn out of malate and into this reaction rather than directly from the air.) Cross section of a C 3 plant, specifically of an Arabidopsis thaliana leaf. Vascular bundles shown.

  5. These Plants Grew in the Dark Without Sunlight. Here's How. - AOL

    www.aol.com/news/plants-grew-dark-without...

    Lose the sunlight, and the tomatoes you planted this spring aren’t likely going to last very long.This can create a major challenge when it comes to addressing global food needs in increasingly ...

  6. Biological carbon fixation - Wikipedia

    en.wikipedia.org/wiki/Biological_carbon_fixation

    This is known as carbon isotope discrimination and results in carbon-12 to carbon-13 ratios in the plant that are higher than in the free air. Measurement of this isotopic ratio is important in the evaluation of water use efficiency in plants, [32] [33] [34] and also in assessing the possible or likely sources of carbon in global carbon cycle ...

  7. Calvin cycle - Wikipedia

    en.wikipedia.org/wiki/Calvin_cycle

    To create 1 surplus G3P requires 3 carbons, and therefore 3 turns of the Calvin cycle. To make one glucose molecule (which can be created from 2 G3P molecules) would require 6 turns of the Calvin cycle. Surplus G3P can also be used to form other carbohydrates such as starch, sucrose, and cellulose, depending on what the plant needs. [10]

  8. Glucose - Wikipedia

    en.wikipedia.org/wiki/Glucose

    Glucose is a sugar with the molecular formula C 6 H 12 O 6.It is overall the most abundant monosaccharide, [4] a subcategory of carbohydrates.It is mainly made by plants and most algae during photosynthesis from water and carbon dioxide, using energy from sunlight.

  9. Evolution of photosynthesis - Wikipedia

    en.wikipedia.org/wiki/Evolution_of_photosynthesis

    This means that C 4 plants only have an advantage over C 3 organisms in certain conditions: namely, high temperatures and low rainfall. C 4 plants also need high levels of sunlight to thrive. [40] Models suggest that, without wildfires removing shade-casting trees and shrubs, there would be no space for C 4 plants. [41]