enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Irreducible polynomial - Wikipedia

    en.wikipedia.org/wiki/Irreducible_polynomial

    In mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials.The property of irreducibility depends on the nature of the coefficients that are accepted for the possible factors, that is, the ring to which the coefficients of the polynomial and its possible factors are supposed to belong.

  3. Hilbert's irreducibility theorem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_irreducibility...

    To see this, choose a monic irreducible polynomial f(X 1, ..., X n, Y) whose root generates N over E. If f(a 1, ..., a n, Y) is irreducible for some a i, then a root of it will generate the asserted N 0.) Construction of elliptic curves with large rank. [2] Hilbert's irreducibility theorem is used as a step in the Andrew Wiles proof of Fermat's ...

  4. GF (2) - Wikipedia

    en.wikipedia.org/wiki/GF(2)

    GF(2) can be identified with the field of the integers modulo 2, that is, the quotient ring of the ring of integers Z by the ideal 2Z of all even numbers: GF(2) = Z/2Z. Notations Z 2 and Z 2 {\displaystyle \mathbb {Z} _{2}} may be encountered although they can be confused with the notation of 2 -adic integers .

  5. Factorization of polynomials over finite fields - Wikipedia

    en.wikipedia.org/wiki/Factorization_of...

    Irreducible polynomials over finite fields are also useful for pseudorandom number generators using feedback shift registers and discrete logarithm over F 2 n. The number of irreducible monic polynomials of degree n over F q is the number of aperiodic necklaces, given by Moreau's necklace-counting function M q (n). The closely related necklace ...

  6. Irreducibility (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Irreducibility_(mathematics)

    In mathematics, the concept of irreducibility is used in several ways.. A polynomial over a field may be an irreducible polynomial if it cannot be factored over that field.; In abstract algebra, irreducible can be an abbreviation for irreducible element of an integral domain; for example an irreducible polynomial.

  7. Primitive polynomial (field theory) - Wikipedia

    en.wikipedia.org/wiki/Primitive_polynomial...

    Over GF(2), x + 1 is a primitive polynomial and all other primitive polynomials have an odd number of terms, since any polynomial mod 2 with an even number of terms is divisible by x + 1 (it has 1 as a root). An irreducible polynomial F(x) of degree m over GF(p), where p is prime, is a primitive polynomial if the smallest positive integer n ...

  8. Carry-less product - Wikipedia

    en.wikipedia.org/wiki/Carry-less_product

    The elements of GF(2 n), i.e. a finite field whose order is a power of two, are usually represented as polynomials in GF(2)[X]. Multiplication of two such field elements consists of multiplication of the corresponding polynomials, followed by a reduction with respect to some irreducible polynomial which is taken from the construction of the field.

  9. Absolute irreducibility - Wikipedia

    en.wikipedia.org/wiki/Absolute_irreducibility

    A univariate polynomial of degree greater than or equal to 2 is never absolutely irreducible, due to the fundamental theorem of algebra.; The irreducible two-dimensional representation of the symmetric group S 3 of order 6, originally defined over the field of rational numbers, is absolutely irreducible.