enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Carbon-13 nuclear magnetic resonance - Wikipedia

    en.wikipedia.org/wiki/Carbon-13_nuclear_magnetic...

    Homonuclear 13 C-13 C coupling is normally only observed in samples that are enriched with 13 C. The range for one-bond 1 J(13 C, 13 C) is 50–130 Hz. Two-bond 2 J(13 C, 13 C) are near 10 Hz. The trends in J(1 H, 13 C) and J(13 C, 13 C) are similar, except that J(1 H, 13 C are smaller owing to the modest value of the 13 C nuclear magnetic

  3. Persistent carbene - Wikipedia

    en.wikipedia.org/wiki/Persistent_carbene

    One of the more useful physical properties is the diagnostic chemical shift of the carbenic carbon atom in the 13 C-NMR spectrum. Typically this peak is in the range between 200 and 300 ppm, where few other peaks appear in the 13 C-NMR spectrum. An example is shown on the left for a cyclic diaminocarbene which has a carbenic peak at 238 ppm.

  4. Carbon-13 NMR satellite - Wikipedia

    en.wikipedia.org/wiki/Carbon-13_NMR_satellite

    Carbon satellites in physics and spectroscopy, are small peaks that can be seen shouldering the main peaks in the nuclear magnetic resonance (NMR) spectrum.These peaks can occur in the NMR spectrum of any NMR active atom (e.g. 19 F or 31 P NMR) where those atoms adjoin a carbon atom (and where the spectrum is not 13 C-decoupled, which is usually the case).

  5. Deuterated DMSO - Wikipedia

    en.wikipedia.org/wiki/Deuterated_DMSO

    13 C NMR Spectrum of DMSO-d 6. Pure deuterated DMSO shows no peaks in 1 H NMR spectroscopy and as a result is commonly used as an NMR solvent. [2] However commercially available samples are not 100% pure and a residual DMSO-d 5 1 H NMR signal is observed at 2.50ppm (quintet, J HD =1.9Hz). The 13 C chemical shift of DMSO-d 6 is 39.52ppm (septet ...

  6. Proton nuclear magnetic resonance - Wikipedia

    en.wikipedia.org/wiki/Proton_nuclear_magnetic...

    Occasionally, small peaks can be seen shouldering the main 1 H NMR peaks. These peaks are not the result of proton-proton coupling, but result from the coupling of 1 H atoms to an adjoining carbon-13 (13 C) atom. These small peaks are known as carbon satellites as they are small and appear around the main 1 H peak i.e. satellite (around) to

  7. Magnetization transfer - Wikipedia

    en.wikipedia.org/wiki/Magnetization_transfer

    On a properly acquired NMR spectrum this is seen as a narrow Lorentzian line (at 4.8 ppm, 20 C). Bulk water molecules are also relatively far from magnetic field perturbing macromolecules, such that free water protons experience a more homogeneous magnetic field, which results in slower transverse magnetization dephasing and a longer T 2 ...

  8. Nuclear magnetic resonance decoupling - Wikipedia

    en.wikipedia.org/wiki/Nuclear_Magnetic_Resonance...

    1 H (proton) NMR spectroscopy and 13 C NMR spectroscopy analyze 1 H and 13 C nuclei, respectively, and are the most common types (most common analyte isotopes which show signals) of NMR spectroscopy. Homonuclear decoupling is when the nuclei being radio frequency (rf) irradiated are the same isotope as the nuclei being observed (analyzed) in ...

  9. Heteronuclear single quantum coherence spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Heteronuclear_single...

    In a typical HSQC spectrum, the NH 2 peaks from the sidechains of asparagine and glutamine appear as doublets on the top right corner, and a smaller peak may appear on top of each peak due to deuterium exchange from the D 2 O normally added to an NMR sample, giving these sidechain peaks a distinctive appearance. The sidechain amine peaks from ...