Search results
Results from the WOW.Com Content Network
A map is a function, as in the association of any of the four colored shapes in X to its color in Y. In mathematics, a map or mapping is a function in its general sense. [1] These terms may have originated as from the process of making a geographical map: mapping the Earth surface to a sheet of paper. [2]
A function (which in mathematics is generally defined as mapping the elements of one set A to elements of another B) is called "A onto B" (instead of "A to B" or "A into B") only if it is surjective; it may even be said that "f is onto" (i. e. surjective). Not translatable (without circumlocutions) to some languages other than English.
In mathematics, the term linear is used in two distinct senses for two different properties: . linearity of a function (or mapping);; linearity of a polynomial.; An example of a linear function is the function defined by () = (,) that maps the real line to a line in the Euclidean plane R 2 that passes through the origin.
Digital mapping, the use of a computer to depict spatial data on a map; Gene mapping, the assignment of DNA fragments to chromosomes; Mind mapping, the drawing of ideas and the relations among them; Projection mapping, the projection of videos on the surface of objects with irregular shapes; Robotic mapping, creation and use of maps by robots
In mathematics, a map or mapping, is a function in the general sense; here as in the association of any of the four colored shapes in X to its color in Y. [29] Frege famously distinguished between functions and objects . [ 30 ]
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping between two vector spaces that preserves the operations of vector addition and scalar multiplication.
In mathematics, a contraction mapping, or contraction or contractor, on a metric space (M, d) is a function f from M to itself, with the property that there is some real number < such that for all x and y in M,
A map can have any set as its codomain, while, in some contexts, typically in older books, the codomain of a function is specifically the set of real or complex numbers. [13] Alternatively, a map is associated with a special structure (e.g. by explicitly specifying a structured codomain in its definition). For example, a linear map. [14 ...