Search results
Results from the WOW.Com Content Network
For instance, we can express the logical form of a valid argument as: All X are Y All Y are Z Therefore, all X are Z. This argument is formally valid, because every instance of arguments constructed using this scheme is valid. This is in contrast to an argument like "Fred is Mike's brother's son. Therefore Fred is Mike's nephew."
As the study of argument is of clear importance to the reasons that we hold things to be true, logic is of essential importance to rationality. Arguments may be logical if they are "conducted or assessed according to strict principles of validity", [1] while they are rational according to the broader requirement that they are based on reason and knowledge.
The corresponding conditional of a valid argument is a logical truth and the negation of its corresponding conditional is a contradiction. The conclusion is a necessary consequence of its premises. An argument that is not valid is said to be "invalid". An example of a valid (and sound) argument is given by the following well-known syllogism:
Given a structure or interpretation, a sentence will have a fixed truth value. A theory is satisfiable when it is possible to present an interpretation in which all of its sentences are true. The study of algorithms to automatically discover interpretations of theories that render all sentences as being true is known as the satisfiability ...
Forms of logical reasoning can be distinguished based on how the premises support the conclusion. Deductive arguments offer the strongest possible support. Non-deductive arguments are weaker but are nonetheless correct forms of reasoning. [28] [29] The term "proof" is often used for deductive arguments or very strong non-deductive arguments. [30]
The logical form of this argument is known as modus ponens, [39] which is a classically valid form. [40] So, in classical logic, the argument is valid, although it may or may not be sound, depending on the meteorological facts in a given context. This example argument will be reused when explaining § Formalization.
In proof theory and mathematical logic, sequent calculus is a family of formal systems sharing a certain style of inference and certain formal properties. The first sequent calculi systems, LK and LJ, were introduced in 1934/1935 by Gerhard Gentzen [1] as a tool for studying natural deduction in first-order logic (in classical and intuitionistic versions, respectively).
Oral argument at the appellate level accompanies written briefs, which also advance the argument of each party in the legal dispute. A closing argument, or summation, is the concluding statement of each party's counsel reiterating the important arguments for the trier of fact, often the jury, in a court case. A closing argument occurs after the ...