Search results
Results from the WOW.Com Content Network
Lattice path of length 5 in ℤ 2 with S = { (2,0), (1,1), (0,-1) }.. In combinatorics, a lattice path L in the d-dimensional integer lattice of length k with steps in the set S, is a sequence of vectors ,, …, such that each consecutive difference lies in S. [1]
Historically, as a book-keeping device of covariant perturbation theory, the graphs were called Feynman–Dyson diagrams or Dyson graphs, [6] because the path integral was unfamiliar when they were introduced, and Freeman Dyson's derivation from old-fashioned perturbation theory borrowed from the perturbative expansions in statistical mechanics ...
An n-path from an n-tuple (,, …,) of vertices of G to an n-tuple (,, …,) of vertices of G will mean an n-tuple (,, …,) of paths in G, with each leading from to . This n -path will be called non-intersecting just in case the paths P i and P j have no two vertices in common (including endpoints) whenever i ≠ j {\displaystyle i\neq j} .
In mathematics, a self-avoiding walk (SAW) is a sequence of moves on a lattice (a lattice path) that does not visit the same point more than once. This is a special case of the graph theoretical notion of a path. A self-avoiding polygon (SAP) is a closed self-avoiding walk on a lattice. Very little is known rigorously about the self-avoiding ...
In mathematical physics, a Grassmann number, named after Hermann Grassmann (also called an anticommuting number or supernumber), is an element of the exterior algebra of a complex vector space. [1] The special case of a 1-dimensional algebra is known as a dual number .
The path integral formulation is a description in quantum mechanics that generalizes the stationary action principle of classical mechanics.It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional integral, over an infinity of quantum-mechanically possible trajectories to compute a quantum amplitude.
The (large) Schröder numbers count both types of paths, and the little Schröder numbers count only the paths that only touch the diagonal but have no movements along it. [ 3 ] Just as there are (large) Schröder paths, a little Schröder path is a Schröder path that has no horizontal steps on the x {\displaystyle x} -axis.
In mathematical physics, a lattice model is a mathematical model of a physical system that is defined on a lattice, as opposed to a continuum, such as the continuum of space or spacetime. Lattice models originally occurred in the context of condensed matter physics , where the atoms of a crystal automatically form a lattice.