enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Effective half-life - Wikipedia

    en.wikipedia.org/wiki/Effective_half-life

    Alternatively, since the radioactive decay contributes to the "physical (i.e. radioactive)" half-life, while the metabolic elimination processes determines the "biological" half-life of the radionuclide, the two act as parallel paths for elimination of the radioactivity, the effective half-life could also be represented by the formula: [1] [2]

  3. Biological half-life - Wikipedia

    en.wikipedia.org/wiki/Biological_half-life

    Absorption half-life 1 h, elimination half-life 12 h. Biological half-life (elimination half-life, pharmacological half-life) is the time taken for concentration of a biological substance (such as a medication) to decrease from its maximum concentration (C max) to half of C max in the blood plasma.

  4. Half-life - Wikipedia

    en.wikipedia.org/wiki/Half-life

    In this situation it is generally uncommon to talk about half-life in the first place, but sometimes people will describe the decay in terms of its "first half-life", "second half-life", etc., where the first half-life is defined as the time required for decay from the initial value to 50%, the second half-life is from 50% to 25%, and so on.

  5. Pharmacokinetics - Wikipedia

    en.wikipedia.org/wiki/Pharmacokinetics

    In pharmacokinetics, steady state refers to the situation where the overall intake of a drug is fairly in dynamic equilibrium with its elimination. In practice, it is generally considered that once regular dosing of a drug is started, steady state is reached after 3 to 5 times its half-life. In steady state and in linear pharmacokinetics, AUC ...

  6. Elimination (pharmacology) - Wikipedia

    en.wikipedia.org/wiki/Elimination_(pharmacology)

    The plasma half-life or half life of elimination is the time required to eliminate 50% of the absorbed dose of a drug from an organism. Or put another way, the time that it takes for the plasma concentration to fall by half from its maximum levels.

  7. Clearance (pharmacology) - Wikipedia

    en.wikipedia.org/wiki/Clearance_(pharmacology)

    In pharmacology, clearance is a pharmacokinetic parameter representing the efficiency of drug elimination. This is the rate of elimination of a substance divided by its concentration. [1] The parameter also indicates the theoretical volume of plasma from which a substance would be completely removed per unit time.

  8. Absorption rate constant - Wikipedia

    en.wikipedia.org/wiki/Absorption_rate_constant

    The K a is related to the absorption half-life (t 1/2a) per the following equation: K a = ln(2) / t 1/2a. [1] K a values can typically only be found in research articles. [2] This is in contrast to parameters like bioavailability and elimination half-life, which can often be found in drug and pharmacology handbooks. [2]

  9. Elimination rate constant - Wikipedia

    en.wikipedia.org/wiki/Elimination_rate_constant

    The elimination rate constant K or K e is a value used in pharmacokinetics to describe the rate at which a drug is removed from the human system. [1] It is often abbreviated K or K e. It is equivalent to the fraction of a substance that is removed per unit time measured at any particular instant and has units of T −1.