Search results
Results from the WOW.Com Content Network
The naming procedure for large numbers is based on taking the number n occurring in 10 3n+3 (short scale) or 10 6n (long scale) and concatenating Latin roots for its units, tens, and hundreds place, together with the suffix -illion. In this way, numbers up to 10 3·999+3 = 10 3000 (short scale) or 10 6·999 = 10 5994 (long scale) may be named.
1/52! chance of a specific shuffle Mathematics: The chances of shuffling a standard 52-card deck in any specific order is around 1.24 × 10 −68 (or exactly 1 ⁄ 52!) [4] Computing: The number 1.4 × 10 −45 is approximately equal to the smallest positive non-zero value that can be represented by a single-precision IEEE floating-point value.
A googol is the large number 10 100 or ten to the power of one hundred. In decimal notation, it is written as the digit 1 followed by one hundred zeroes: 10, 000, 000 ...
A typical book can be printed with 10 6 zeros (around 400 pages with 50 lines per page and 50 zeros per line). Therefore, it requires 10 94 such books to print all the zeros of a googolplex (that is, printing a googol zeros). [4] If each book had a mass of 100 grams, all of them would have a total mass of 10 93 kilograms.
The long and short scales are two of several naming systems for integer powers of ten which use some of the same terms for different magnitudes. [1] [2]Some languages, particularly in East Asia and South Asia, have large number naming systems that are different from both the long and short scales, such as the Indian numbering system and the Chinese, Japanese, or Korean numerals.
Order of magnitude. Order of magnitude is a concept used to discuss the scale of numbers in relation to one another. Two numbers are "within an order of magnitude" of each other if their ratio is between 1/10 and 10. In other words, the two numbers are within about a factor of 10 of each other. [1]
The number one thousand may be written 1 000 or 1000 or 1,000; larger numbers are written for example 10 000 or 10,000 for ease of reading. ... one quadrillion a ...
Graham's number. Graham's number is an immense number that arose as an upper bound on the answer of a problem in the mathematical field of Ramsey theory. It is much larger than many other large numbers such as Skewes's number and Moser's number, both of which are in turn much larger than a googolplex. As with these, it is so large that the ...