Search results
Results from the WOW.Com Content Network
Collenchyma cells are usually living, and have only a thick primary cell wall [6] made up of cellulose and pectin. Cell wall thickness is strongly affected by mechanical stress upon the plant. The walls of collenchyma in shaken plants (to mimic the effects of wind etc.), may be 40–100% thicker than those not shaken. There are four main types ...
The fluid coating is produced by the body in order to facilitate the transfer of gases between blood and alveolar air, and the type II cells are typically found at the blood–air barrier. [19] [20] Type II cells start to develop at about 26 weeks of gestation, secreting small amounts of surfactant.
The eukaryotic cell cycle consists of four distinct phases: G 1 phase, S phase (synthesis), G 2 phase (collectively known as interphase) and M phase (mitosis and cytokinesis). M phase is itself composed of two tightly coupled processes: mitosis, in which the cell's nucleus divides, and cytokinesis, in which the cell's cytoplasm and cell membrane divides forming two daughter cells.
The mesothelium is composed of an extensive monolayer of specialized cells (mesothelial cells) that line the body's serous cavities and internal organs. The main purpose of these cells is to produce a lubricating fluid that is released between layers, [ 4 ] providing a slippery, non-adhesive, and protective surface to facilitate intracoelomic ...
Another important cell type is the pulmonary neuroendocrine cell. These are innervated cells that only make up around 0.5% of the respiratory epithelial cells. [7] The ciliated cells are columnar epithelial cells with specialized ciliary modifications. The ciliated cells make up between 50 and 80 per cent of the epithelium. [8]
Micrograph showing hemosiderin-laden alveolar macrophages, as seen in a pulmonary hemorrhage. H&E stain.. An alveolar macrophage, pulmonary macrophage, (or dust cell) is a type of macrophage, a professional phagocyte, found in the airways and at the level of the alveoli in the lungs, but separated from their walls.
The cell starts producing the secondary cell wall after the primary cell wall is complete and the cell has stopped expanding. [1] It is most prevalent in the Ground tissue found in vascular plants, with Collenchyma having little to no lignin, and Sclerenchyma having lignified secondary cells walls. [2] [3]
This blood–air barrier is extremely thin (approximately 600 nm-2μm; in some places merely 200 nm) to allow sufficient oxygen diffusion, yet it is extremely strong. This strength comes from the type IV collagen in between the endothelial and epithelial cells. Damage can occur to this barrier at a pressure difference of around 40 millimetres ...