enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Material failure theory - Wikipedia

    en.wikipedia.org/wiki/Material_failure_theory

    In mathematical terms, failure theory is expressed in the form of various failure criteria which are valid for specific materials. Failure criteria are functions in stress or strain space which separate "failed" states from "unfailed" states. A precise physical definition of a "failed" state is not easily quantified and several working ...

  3. Goodman relation - Wikipedia

    en.wikipedia.org/wiki/Goodman_relation

    Within the branch of materials science known as material failure theory, the Goodman relation (also called a Goodman diagram, a Goodman-Haigh diagram, a Haigh diagram or a Haigh-Soderberg diagram) is an equation used to quantify the interaction of mean and alternating stresses on the fatigue life of a material. [1]

  4. Christensen failure criterion - Wikipedia

    en.wikipedia.org/wiki/Christensen_Failure_Criterion

    The Christensen failure criterion is a material failure theory for isotropic materials that attempts to span the range from ductile to brittle materials. [1] It has a two-property form calibrated by the uniaxial tensile and compressive strengths T ( σ T ) {\displaystyle \left(\sigma _{T}\right)} and C ( σ C ) {\displaystyle \left(\sigma _{C ...

  5. Tsai–Wu failure criterion - Wikipedia

    en.wikipedia.org/wiki/Tsai–Wu_failure_criterion

    The Tsai–Wu failure criterion is a phenomenological material failure theory which is widely used for anisotropic composite materials which have different strengths in tension and compression. [1] The Tsai-Wu criterion predicts failure when the failure index in a laminate reaches 1.

  6. T-criterion - Wikipedia

    en.wikipedia.org/wiki/T-criterion

    The T-failure criterion is a set of material failure criteria that can be used to predict both brittle and ductile failure. [1] [2]These criteria were designed as a replacement for the von Mises yield criterion which predicts the unphysical result that pure hydrostatic tensile loading of metals never leads to failure.

  7. Stress–strain analysis - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_analysis

    The design factor (a number greater than 1.0) represents the degree of uncertainty in the value of the loads, material strength, and consequences of failure. The stress (or load, or deflection) the structure is expected to experience are known as the working, the design or limit stress.

  8. Tsai-Hill failure criterion - Wikipedia

    en.wikipedia.org/wiki/Tsai-Hill_failure_criterion

    The Tsai hill criterion is interactive, i.e. the stresses in different directions are not decoupled and do affect the failure simultaneously. [2] Furthermore, it is a failure mode independent criterion, as it does not predict the way in which the material will fail, as opposed to mode-dependent criteria such as the Hashin criterion, or the Puck ...

  9. Forming limit diagram - Wikipedia

    en.wikipedia.org/wiki/Forming_limit_diagram

    The mechanical test is performed by placing a circular mark on the work piece prior to deformation, and then measuring the post-deformation ellipse that is generated from the action on this circle. By repeating the mechanical test to generate a range of stress states, the formability limit diagram can be generated as a line at which failure is ...