Search results
Results from the WOW.Com Content Network
The version given here is that proven by Nash-Williams; Kruskal's formulation is somewhat stronger. All trees we consider are finite. Given a tree T with a root, and given vertices v, w, call w a successor of v if the unique path from the root to w contains v, and call w an immediate successor of v if additionally the path from v to w contains no other vertex.
A rooted tree T that is a subgraph of some graph G is a normal tree if the ends of every T-path in G are comparable in this tree-order (Diestel 2005, p. 15). Rooted trees, often with an additional structure such as an ordering of the neighbors at each vertex, are a key data structure in computer science; see tree data structure.
An order on the set of finite rooted trees is defined recursively: we first order the subtrees joined to the root in decreasing order, and then use lexicographic order on these ordered sequences of subtrees. In this way the set of all finite rooted trees becomes a well-ordered set which is order isomorphic to ε 0.
Trees with a single root may be viewed as rooted trees in the sense of graph theory in one of two ways: either as a tree (graph theory) or as a trivially perfect graph. In the first case, the graph is the undirected Hasse diagram of the partially ordered set, and in the second case, the graph is simply the underlying (undirected) graph of the ...
Each labelled rooted forest can be turned into a labelled tree with one extra vertex, by adding a vertex with label n + 1 and connecting it to all roots of the trees in the forest. There is a close connection with rooted forests and parking functions , since the number of parking functions on n cars is also ( n + 1) n − 1 .
The term arborescence comes from French. [6] Some authors object to it on grounds that it is cumbersome to spell. [7] There is a large number of synonyms for arborescence in graph theory, including directed rooted tree, [3] [7] out-arborescence, [8] out-tree, [9] and even branching being used to denote the same concept. [9]
Phylogenetic trees generated by computational phylogenetics can be either rooted or unrooted depending on the input data and the algorithm used. A rooted tree is a directed graph that explicitly identifies a most recent common ancestor (MRCA), [citation needed] usually an inputed sequence that is not represented in the input.
an online tool for phylogenetic tree view (newick format) that allows multiple sequence alignments to be shown together with the trees (fasta format) EvolView [3] an online tool for visualizing, annotating and managing phylogenetic trees IcyTree [4] Client-side Javascript SVG viewer for annotated rooted trees. Also supports phylogenetic networks