Search results
Results from the WOW.Com Content Network
Since an entropy is a state function, the entropy change of the system for an irreversible path is the same as for a reversible path between the same two states. [22] However, the heat transferred to or from the surroundings is different as well as its entropy change. We can calculate the change of entropy only by integrating the above formula.
The entropy is thus a measure of the uncertainty about exactly which quantum state the system is in, given that we know its energy to be in some interval of size . Deriving the fundamental thermodynamic relation from first principles thus amounts to proving that the above definition of entropy implies that for reversible processes we have:
F is the Helmholtz free energy (sometimes also called A, particularly in the field of chemistry) (SI: joules, CGS: ergs), U is the internal energy of the system (SI: joules, CGS: ergs), T is the absolute temperature of the surroundings, modelled as a heat bath, S is the entropy of the system (SI: joules per kelvin, CGS: ergs per kelvin).
Von Neumann entropy. In physics, the von Neumann entropy, named after John von Neumann, is an extension of the concept of Gibbs entropy from classical statistical mechanics to quantum statistical mechanics. For a quantum-mechanical system described by a density matrix ρ, the von Neumann entropy is [1] {\displaystyle S=-\operatorname {tr} (\rho ...
A measure of disorder in the universe or of the unavailability of the energy in a system to do work. [7] Entropy and disorder also have associations with equilibrium. [8] Technically, entropy, from this perspective, is defined as a thermodynamic property which serves as a measure of how close a system is to equilibrium—that is, to perfect ...
Thermodynamics. In thermodynamics, entropy is a numerical quantity that shows that many physical processes can go in only one direction in time. For example, cream and coffee can be mixed together, but cannot be "unmixed"; a piece of wood can be burned, but cannot be "unburned". The word 'entropy' has entered popular usage to refer to a lack of ...
Gibbs–Helmholtz equation. The Gibbs–Helmholtz equation is a thermodynamic equation used to calculate changes in the Gibbs free energy of a system as a function of temperature. It was originally presented in an 1882 paper entitled "Die Thermodynamik chemischer Vorgänge" by Hermann von Helmholtz. It describes how the Gibbs free energy, which ...
The Van 't Hoff equation relates the change in the equilibrium constant, Keq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, ΔrH⊖, for the process. The subscript means "reaction" and the superscript means "standard". It was proposed by Dutch chemist Jacobus Henricus van 't Hoff in 1884 in his book ...