Search results
Results from the WOW.Com Content Network
Paper which explains step by step how cubic spline interpolation is done, but only for equidistant knots. Numerical Recipes in C, Go to Chapter 3 Section 3-3; A note on cubic splines; Information about spline interpolation (including code in Fortran 77) TinySpline:Open source C-library for splines which implements cubic spline interpolation
Cubic polynomial splines are extensively used in computer graphics and geometric modeling to obtain curves or motion trajectories that pass through specified points of the plane or three-dimensional space. In these applications, each coordinate of the plane or space is separately interpolated by a cubic spline function of a separate parameter t.
The most familiar example is the cubic smoothing spline, but there are many other possibilities, including for the case where is a vector quantity. Cubic spline ...
Bicubic interpolation can be accomplished using either Lagrange polynomials, cubic splines, or cubic convolution algorithm. In image processing , bicubic interpolation is often chosen over bilinear or nearest-neighbor interpolation in image resampling , when speed is not an issue.
The next most simple spline has degree 1. It is also called a linear spline. A closed linear spline (i.e, the first knot and the last are the same) in the plane is just a polygon. A common spline is the natural cubic spline. A cubic spline has degree 3 with continuity C 2, i.e. the values and first and second derivatives are continuous. Natural ...
Example showing non-monotone cubic interpolation (in red) and monotone cubic interpolation (in blue) of a monotone data set. Monotone interpolation can be accomplished using cubic Hermite spline with the tangents m i {\displaystyle m_{i}} modified to ensure the monotonicity of the resulting Hermite spline.
A discrete spline is a piecewise polynomial such that its central differences are continuous at the knots whereas a spline is a piecewise polynomial such that its derivatives are continuous at the knots. Discrete cubic splines are discrete splines where the central differences of orders 0, 1, and 2 are required to be continuous. [1]
SO has a MATLAB example that demonstrates the algorithm and recreates the first image in this article; Lagrange Method of Interpolation — Notes, PPT, Mathcad, Mathematica, MATLAB, Maple; Lagrange interpolation polynomial on www.math-linux.com; Weisstein, Eric W. "Lagrange Interpolating Polynomial". MathWorld.