Search results
Results from the WOW.Com Content Network
Row echelon form. In linear algebra, a matrix is in row echelon form if it can be obtained as the result of Gaussian elimination. Every matrix can be put in row echelon form by applying a sequence of elementary row operations. The term echelon comes from the French échelon ("level" or step of a ladder), and refers to the fact that the nonzero ...
The lambdas are the eigenvalues of the matrix; they need not be distinct. In linear algebra, a Jordan normal form, also known as a Jordan canonical form, [1][2] is an upper triangular matrix of a particular form called a Jordan matrix representing a linear operator on a finite-dimensional vector space with respect to some basis.
The row echelon form is a canonical form, when one considers as equivalent a matrix and its left product by an invertible matrix. In computer science, and more specifically in computer algebra , when representing mathematical objects in a computer, there are usually many different ways to represent the same object.
Smith normal form. In mathematics, the Smith normal form (sometimes abbreviated SNF[1]) is a normal form that can be defined for any matrix (not necessarily square) with entries in a principal ideal domain (PID). The Smith normal form of a matrix is diagonal, and can be obtained from the original matrix by multiplying on the left and right by ...
A linear recursive sequence defined by for has the characteristic polynomial , whose transpose companion matrix generates the sequence: The vector is an eigenvector of this matrix, where the eigenvalue is a root of . Setting the initial values of the sequence equal to this vector produces a geometric sequence which satisfies the recurrence.
In mathematics, a system of linear equations (or linear system) is a collection of two or more linear equations involving the same variables. [1][2] For example, is a system of three equations in the three variables x, y, z. A solution to a linear system is an assignment of values to the variables such that all the equations are simultaneously ...
Realization (systems) In systems theory, a realization of a state space model is an implementation of a given input-output behavior. That is, given an input-output relationship, a realization is a quadruple of (time-varying) matrices such that. with describing the input and output of the system at time .
Mathematical model of a system in control engineering. In control engineering and system identification, a state-space representation is a mathematical model of a physical system specified as a set of input, output, and variables related by first-order differential equations or difference equations. Such variables, called state variables ...