Search results
Results from the WOW.Com Content Network
In mathematics, the distributive property of binary operations is a generalization of the distributive law, which asserts that the equality is always true in elementary algebra. For example, in elementary arithmetic, one has Therefore, one would say that multiplication distributes over addition. This basic property of numbers is part of the ...
First stated in. 1929; 95 years ago (1929) In elementary algebra, FOIL is a mnemonic for the standard method of multiplying two binomials [1] —hence the method may be referred to as the FOIL method. The word FOIL is an acronym for the four terms of the product: F irst ("first" terms of each binomial are multiplied together) O uter ("outside ...
The difference of two squares is used to find the linear factors of the sum of two squares, using complex number coefficients. For example, the complex roots of can be found using difference of two squares: (since ) Therefore, the linear factors are and . Since the two factors found by this method are complex conjugates, we can use this in ...
Distributivity (order theory) In the mathematical area of order theory, there are various notions of the common concept of distributivity, applied to the formation of suprema and infima. Most of these apply to partially ordered sets that are at least lattices, but the concept can in fact reasonably be generalized to semilattices as well.
The category of sets is distributive. Let A, B, and C be sets. Then. where denotes the coproduct in Set, namely the disjoint union, and denotes a bijection. In the case where A, B, and C are finite sets, this result reflects the distributive property: the above sets each have cardinality . The categories Grp and Ab are not distributive, even ...
A lattice (L,∨,∧) is distributive if the following additional identity holds for all x, y, and z in L: x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z). Viewing lattices as partially ordered sets, this says that the meet operation preserves non-empty finite joins. It is a basic fact of lattice theory that the above condition is equivalent to its ...
Complex number. A complex number can be visually represented as a pair of numbers (a, b) forming a vector on a diagram called an Argand diagram, representing the complex plane. Re is the real axis, Im is the imaginary axis, and i is the "imaginary unit", that satisfies i2 = −1. In mathematics, a complex number is an element of a number system ...
In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a property of arithmetic, e.g. "3 + 4 = 4 + 3" or "2 × 5 = 5 × 2", the property can also be used in more ...