Search results
Results from the WOW.Com Content Network
This can be done in terms of the chemical elements present, or by molecular structure e.g., water, protein, fats (or lipids), hydroxyapatite (in bones), carbohydrates (such as glycogen and glucose) and DNA. In terms of tissue type, the body may be analyzed into water, fat, connective tissue, muscle, bone, etc.
Water: Solvent 0.81-0.86 0.93-0.95 Acetoacetate: Produced in liver 8-40 × 10 −7: 4-43 × 10 −7: Acetone: product of bodyfat breakdown 3-20 × 10 −6: Acetylcholine: Neurotransmitter of the parasympathetic nervous system: 6.6-8.2 × 10 −8: Adenosine triphosphate: Energy storage total 3.1-5.7 × 10 −4: phosphorus 5-10 × 10 −5 ...
The enzymes that join glucose to other molecules usually use phosphorylated glucose to power the formation of the new bond by coupling it with the breaking of the glucose-phosphate bond. Other than its direct use as a monomer, glucose can be broken down to synthesize a wide variety of other biomolecules.
Glucose molecules are added to the chains of glycogen as long as both insulin and glucose remain plentiful. In this postprandial or "fed" state, the liver takes in more glucose from the blood than it releases. After a meal has been digested and glucose levels begin to fall, insulin secretion is reduced, and glycogen synthesis stops.
Triglycerides are the main constituents of body fat in humans and other vertebrates as well as vegetable fat. [2] They are also present in the blood to enable the bidirectional transference of adipose fat and blood glucose from the liver and are a major component of human skin oils. [3] Many types of triglycerides exist.
This is an index of lists of molecules (i.e. by year, number of atoms, etc.). Millions of molecules have existed in the universe since before the formation of Earth. Three of them, carbon dioxide, water and oxygen were necessary for the growth of life.
Hence the citric acid cycle can start at acetyl-CoA when fat is being broken down for energy if there is little or no glucose available. The energy yield of the complete oxidation of the fatty acid palmitate is 106 ATP. [2]: 625–6 Unsaturated and odd-chain fatty acids require additional enzymatic steps for degradation.
For substances with an A- or α- prefix such as α-amylase, please see the parent page (in this case Amylase). A23187 (Calcimycin, Calcium Ionophore); Abamectine; Abietic acid