Search results
Results from the WOW.Com Content Network
A bagplot, or starburst plot, [1] [2] is a method in robust statistics for visualizing two-or three-dimensional statistical data, analogous to the one-dimensional box plot. Introduced in 1999 by Rousseuw et al., the bagplot allows one to visualize the location, spread, skewness, and outliers of a data set. [3]
Figure 2. Box-plot with whiskers from minimum to maximum Figure 3. Same box-plot with whiskers drawn within the 1.5 IQR value. A boxplot is a standardized way of displaying the dataset based on the five-number summary: the minimum, the maximum, the sample median, and the first and third quartiles.
In statistical graphics, the functional boxplot is an informative exploratory tool that has been proposed for visualizing functional data. [1] [2] Analogous to the classical boxplot, the descriptive statistics of a functional boxplot are: the envelope of the 50% central region, the median curve and the maximum non-outlying envelope.
However, multiple iterations change the probabilities of detection, and the test should not be used for sample sizes of six or fewer since it frequently tags most of the points as outliers. [3] Grubbs's test is defined for the following hypotheses: H 0: There are no outliers in the data set H a: There is exactly one outlier in the data set
To construct a contour boxplot, data ordering is the first step. In functional data analysis, each observation is a real function, therefore data ordering is different from the classical boxplot where scalar data are simply ordered from the smallest sample value to the largest. More generally, data depth, gives a center-outward ordering of data ...
He introduced the box plot in his 1977 book, "Exploratory Data Analysis". Tukey's range test, the Tukey lambda distribution, Tukey's test of additivity, Tukey's lemma, and the Tukey window all bear his name. He is also the creator of several little-known methods such as the trimean and median-median line, an easier alternative to linear regression.
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
t-distributed stochastic neighbor embedding (t-SNE) is a statistical method for visualizing high-dimensional data by giving each datapoint a location in a two or three-dimensional map.