Search results
Results from the WOW.Com Content Network
A solution in radicals or algebraic solution is an expression of a solution of a polynomial equation that is algebraic, that is, relies only on addition, subtraction, multiplication, division, raising to integer powers, and extraction of n th roots (square roots, cube roots, etc.). A well-known example is the quadratic formula
The nested radicals in this solution cannot in general be simplified unless the cubic equation has at least one rational solution. Indeed, if the cubic has three irrational but real solutions, we have the casus irreducibilis, in which all three real solutions are written in terms of cube roots of complex numbers. On the other hand, consider the ...
Searching for the real or rational solutions are much more difficult problems that are not considered in this article. The set of solutions is not always finite; for example, the solutions of the system = = are a point (x,y) = (1,1) and a line x = 0. [2]
Instantiating a symbolic solution with specific numbers gives a numerical solution; for example, a = 0 gives (x, y) = (1, 0) (that is, x = 1, y = 0), and a = 1 gives (x, y) = (2, 1). The distinction between known variables and unknown variables is generally made in the statement of the problem, by phrases such as "an equation in x and y ", or ...
In mathematics, an extraneous solution (or spurious solution) is one which emerges from the process of solving a problem but is not a valid solution to it. [1] A missing solution is a valid one which is lost during the solution process.
In mathematics, the solution set of a system of equations or inequality is the set of all its solutions, that is the values that satisfy all equations and inequalities. [1] Also, the solution set or the truth set of a statement or a predicate is the set of all values that satisfy it. If there is no solution, the solution set is the empty set. [2]
Radical extensions occur naturally when solving polynomial equations in radicals. In fact a solution in radicals is the expression of the solution as an element of a radical series: a polynomial f over a field K is said to be solvable by radicals if there is a splitting field of f over K contained in a radical extension of K.
Galois theory has been used to solve classic problems including showing that two problems of antiquity cannot be solved as they were stated (doubling the cube and trisecting the angle), and characterizing the regular polygons that are constructible (this characterization was previously given by Gauss but without the proof that the list of ...