Search results
Results from the WOW.Com Content Network
A similar derivation can be done using the unilateral Laplace transform (one-sided Laplace transform). The convolution operation also describes the output (in terms of the input) of an important class of operations known as linear time-invariant (LTI). See LTI system theory for a derivation of convolution as the result of LTI constraints.
In mathematics, the Laplace transform, named after Pierre-Simon Laplace (/ l ə ˈ p l ɑː s /), is an integral transform that converts a function of a real variable (usually , in the time domain) to a function of a complex variable (in the complex-valued frequency domain, also known as s-domain, or s-plane).
Symbolab is an answer engine [1] that provides step-by-step solutions to mathematical problems in a range of subjects. [2] It was originally developed by Israeli start-up company EqsQuest Ltd., under whom it was released for public use in 2011. In 2020, the company was acquired by American educational technology website Course Hero. [3] [4]
In mathematics, the convolution theorem states that under suitable conditions the Fourier transform of a convolution of two functions (or signals) is the product of their Fourier transforms. More generally, convolution in one domain (e.g., time domain) equals point-wise multiplication in the other domain (e.g., frequency domain). Other versions ...
Such equations can be analyzed and solved by means of Laplace transform techniques. For a weakly singular kernel of the form K ( t , s ) = ( t 2 − s 2 ) − α {\displaystyle K(t,s)=(t^{2}-s^{2})^{-\alpha }} with 0 < α < 1 {\displaystyle 0<\alpha <1} , Volterra integral equation of the first kind can conveniently be transformed into a ...
The state-transition equation is defined as the solution of the linear homogeneous state equation. The linear time-invariant state equation given by = + + (), with state vector x, control vector u, vector w of additive disturbances, and fixed matrices A, B, E can be solved by using either the classical method of solving linear differential equations or the Laplace transform method.
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
This kind of deconvolution can be performed in the Laplace domain. By computing the Fourier transform of the recorded signal h and the system response function g, you get H and G, with G as the transfer function. Using the Convolution theorem, = / where F is the estimated Fourier transform of f.