enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Whitehead theorem - Wikipedia

    en.wikipedia.org/wiki/Whitehead_theorem

    For instance, take X= S 2 × RP 3 and Y= RP 2 × S 3. Then X and Y have the same fundamental group, namely the cyclic group Z/2, and the same universal cover, namely S 2 × S 3; thus, they have isomorphic homotopy groups. On the other hand their homology groups are different (as can be seen from the Künneth formula); thus, X and Y are not ...

  3. CW complex - Wikipedia

    en.wikipedia.org/wiki/CW_complex

    CW complexes satisfy the Whitehead theorem: a map between CW complexes is a homotopy equivalence if and only if it induces an isomorphism on all homotopy groups. A covering space of a CW complex is also a CW complex. [13] The product of two CW complexes can be made into a CW complex.

  4. Intersection form of a 4-manifold - Wikipedia

    en.wikipedia.org/wiki/Intersection_form_of_a_4...

    In fact, Rokhlin's theorem implies that a smooth compact spin 4-manifold has signature a multiple of 16. Michael Freedman used the intersection form to classify simply-connected topological 4-manifolds. Given any unimodular symmetric bilinear form over the integers, Q, there is a simply-connected closed 4-manifold M with intersection form Q.

  5. Whitehead torsion - Wikipedia

    en.wikipedia.org/wiki/Whitehead_torsion

    Two pairs (X 1, A) and (X 2, A) are said to be equivalent, if there is a simple homotopy equivalence between X 1 and X 2 relative to A. The set of such equivalence classes form a group where the addition is given by taking union of X 1 and X 2 with common subspace A. This group is natural isomorphic to the Whitehead group Wh(A) of the CW-complex A.

  6. Whitehead's lemma (Lie algebra) - Wikipedia

    en.wikipedia.org/wiki/Whitehead's_lemma_(Lie...

    In homological algebra, Whitehead's lemmas (named after J. H. C. Whitehead) represent a series of statements regarding representation theory of finite-dimensional, semisimple Lie algebras in characteristic zero. Historically, they are regarded as leading to the discovery of Lie algebra cohomology. [1]

  7. Whitehead manifold - Wikipedia

    en.wikipedia.org/wiki/Whitehead_manifold

    The Whitehead manifold is defined as =, which is a non-compact manifold without boundary. It follows from our previous observation, the Hurewicz theorem, and Whitehead's theorem on homotopy equivalence, that X is contractible.

  8. Betti number - Wikipedia

    en.wikipedia.org/wiki/Betti_number

    In algebraic topology, the Betti numbers are used to distinguish topological spaces based on the connectivity of n-dimensional simplicial complexes.For the most reasonable finite-dimensional spaces (such as compact manifolds, finite simplicial complexes or CW complexes), the sequence of Betti numbers is 0 from some point onward (Betti numbers vanish above the dimension of a space), and they ...

  9. Morse theory - Wikipedia

    en.wikipedia.org/wiki/Morse_theory

    The basic theorem is that the resulting homology is an invariant of the manifold (that is, independent of the function and metric) and isomorphic to the singular homology of the manifold; this implies that the Morse and singular Betti numbers agree and gives an immediate proof of the Morse inequalities.