Search results
Results from the WOW.Com Content Network
function Depth-Limited-Search-Backward(u, Δ, B, F) is prepend u to B if Δ = 0 then if u in F then return u (Reached the marked node, use it as a relay node) remove the head node of B return null foreach parent of u do μ ← Depth-Limited-Search-Backward(parent, Δ − 1, B, F) if μ null then return μ remove the head node of B return null
Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data structures. The algorithm starts at the root node (selecting some arbitrary node as the root node in the case of a graph) and explores as far as possible along each branch before backtracking.
The function strongconnect performs a single depth-first search of the graph, finding all successors from the node v, and reporting all strongly connected components of that subgraph. When each node finishes recursing, if its lowlink is still set to its index, then it is the root node of a strongly connected component, formed by all of the ...
In depth-first search (DFS), the search tree is deepened as much as possible before going to the next sibling. To traverse binary trees with depth-first search, perform the following operations at each node: [3] [4] If the current node is empty then return. Execute the following three operations in a certain order: [5] N: Visit the current node.
A difference list f is a single-argument function append L, which when given a linked list X as argument, returns a linked list containing L prepended to X. Concatenation of difference lists is implemented as function composition. The contents may be retrieved using f []. [1]
Thomae's function: is a function that is continuous at all irrational numbers and discontinuous at all rational numbers. It is also a modification of Dirichlet function and sometimes called Riemann function. Kronecker delta function: is a function of two variables, usually integers, which is 1 if they are equal, and 0 otherwise.
The result of the series is also a function of the discrete variable, i.e. a discrete sequence. A Fourier series, by nature, has a discrete set of components with a discrete set of coefficients, also a discrete sequence. So a DFS is a representation of one sequence in terms of another sequence.
The test functions used to evaluate the algorithms for MOP were taken from Deb, [4] Binh et al. [5] and Binh. [6] The software developed by Deb can be downloaded, [ 7 ] which implements the NSGA-II procedure with GAs, or the program posted on Internet, [ 8 ] which implements the NSGA-II procedure with ES.