enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Geometrical properties of polynomial roots - Wikipedia

    en.wikipedia.org/wiki/Geometrical_properties_of...

    The Gauss–Lucas theorem states that the convex hull of the roots of a polynomial contains the roots of the derivative of the polynomial. A sometimes useful corollary is that, if all roots of a polynomial have positive real part, then so do the roots of all derivatives of the polynomial. A related result is Bernstein's inequality.

  3. Polynomial root-finding - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding

    The class of methods is based on converting the problem of finding polynomial roots to the problem of finding eigenvalues of the companion matrix of the polynomial, [1] in principle, can use any eigenvalue algorithm to find the roots of the polynomial. However, for efficiency reasons one prefers methods that employ the structure of the matrix ...

  4. Descartes' rule of signs - Wikipedia

    en.wikipedia.org/wiki/Descartes'_rule_of_signs

    The rule states that if the nonzero terms of a single-variable polynomial with real coefficients are ordered by descending variable exponent, then the number of positive roots of the polynomial is either equal to the number of sign changes between consecutive (nonzero) coefficients, or is less than it by an even number.

  5. Lill's method - Wikipedia

    en.wikipedia.org/wiki/Lill's_method

    Finding roots −1/2, −1/ √ 2, and 1/ √ 2 of the cubic 4x 3 + 2x 2 − 2x − 1, showing how negative coefficients and extended segments are handled.Each number shown on a colored line is the negative of its slope and hence a real root of the polynomial.

  6. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    Graeffe's method – Algorithm for finding polynomial roots; Lill's method – Graphical method for the real roots of a polynomial; MPSolve – Software for approximating the roots of a polynomial with arbitrarily high precision; Multiplicity (mathematics) – Number of times an object must be counted for making true a general formula

  7. Gauss–Lucas theorem - Wikipedia

    en.wikipedia.org/wiki/Gauss–Lucas_theorem

    The set of roots of a real or complex polynomial is a set of points in the complex plane. The theorem states that the roots of P' all lie within the convex hull of the roots of P, that is the smallest convex polygon containing the roots of P.

  8. Real-root isolation - Wikipedia

    en.wikipedia.org/wiki/Real-root_isolation

    Budan's may provide a real-root-isolation algorithm for a square-free polynomial (a polynomial without multiple root): from the coefficients of polynomial, one may compute an upper bound M of the absolute values of the roots and a lower bound m on the absolute values of the differences of two roots (see Properties of polynomial roots).

  9. Vieta's formulas - Wikipedia

    en.wikipedia.org/wiki/Vieta's_formulas

    Vieta's formulas are frequently used with polynomials with coefficients in any integral domain R.Then, the quotients / belong to the field of fractions of R (and possibly are in R itself if happens to be invertible in R) and the roots are taken in an algebraically closed extension.