enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Load factor (aeronautics) - Wikipedia

    en.wikipedia.org/wiki/Load_factor_(aeronautics)

    In the definition of load factor, the lift is not simply that one generated by the aircraft's wing, instead it is the vector sum of the lift generated by the wing, the fuselage and the tailplane, [2]: 395 or in other words it is the component perpendicular to the airflow of the sum of all aerodynamic forces acting on the aircraft.

  3. Structural engineering theory - Wikipedia

    en.wikipedia.org/wiki/Structural_engineering_theory

    Loads imposed on structures are supported by means of forces transmitted through structural elements. These forces can manifest themselves as tension (axial force), compression (axial force), shear, and bending, or flexure (a bending moment is a force multiplied by a distance, or lever arm, hence producing a turning effect or torque).

  4. Lifting-line theory - Wikipedia

    en.wikipedia.org/wiki/Lifting-line_theory

    Lifting line theory supposes wings that are long and thin with negligible fuselage, akin to a thin bar (the eponymous "lifting line") of span 2s driven through the fluid. . From the Kutta–Joukowski theorem, the lift L(y) on a 2-dimensional segment of the wing at distance y from the fuselage is proportional to the circulation Γ(y) about the bar a

  5. Compatibility (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Compatibility_(mechanics)

    For two-dimensional, plane strain problems the strain-displacement relations are = ; = [+] ; = Repeated differentiation of these relations, in order to remove the displacements and , gives us the two-dimensional compatibility condition for strains

  6. Structural load - Wikipedia

    en.wikipedia.org/wiki/Structural_load

    A structural load or structural action is a mechanical load (more generally a force) applied to structural elements. [1] [2] A load causes stress, deformation, displacement or acceleration in a structure. Structural analysis, a discipline in engineering, analyzes the effects of loads on structures and structural elements.

  7. Plane stress - Wikipedia

    en.wikipedia.org/wiki/Plane_stress

    Figure 7.1 Plane stress state in a continuum. In continuum mechanics, a material is said to be under plane stress if the stress vector is zero across a particular plane. When that situation occurs over an entire element of a structure, as is often the case for thin plates, the stress analysis is considerably simplified, as the stress state can be represented by a tensor of dimension 2 ...

  8. Aerodynamic force - Wikipedia

    en.wikipedia.org/wiki/Aerodynamic_force

    the shear force due to the viscosity of the gas, also known as skin friction. Pressure acts normal to the surface, and shear force acts parallel to the surface. Both forces act locally. The net aerodynamic force on the body is equal to the pressure and shear forces integrated over the body's total exposed area. [4]

  9. Payload fraction - Wikipedia

    en.wikipedia.org/wiki/Payload_fraction

    For this reason, the useful load fraction calculates a similar number, but it is based on the combined weight of the payload and fuel together in relation to the total weight. Propeller-driven airliners had useful load fractions on the order of 25–35%. Modern jet airliners have considerably higher useful load fractions, on the order of 45–55%.