enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chichibabin reaction - Wikipedia

    en.wikipedia.org/wiki/Chichibabin_reaction

    Factors that influence the reaction rate include: Basicity - The ideal pKa range is 5-8 and the reaction either does not proceed, or proceeds poorly outside of this range. The reaction occurs faster under more basic conditions but only up to a point because when electron density builds up on the α-carbon, it makes it less electrophilic.

  3. Electrophilic aromatic substitution - Wikipedia

    en.wikipedia.org/wiki/Electrophilic_aromatic...

    This makes the reaction even slower by having adjacent formal charges on carbon and nitrogen or 2 formal charges on a localised atom. Doing an electrophilic substitution directly in pyridine is nearly impossible. In order to do the reaction, they can be made by 2 possible reactions, which are both indirect.

  4. Pyridine - Wikipedia

    en.wikipedia.org/wiki/Pyridine

    Some electrophilic substitutions on the pyridine are usefully effected using pyridine N-oxide followed by deoxygenation. Addition of oxygen suppresses further reactions at nitrogen atom and promotes substitution at the 2- and 4-carbons.

  5. Substitution reaction - Wikipedia

    en.wikipedia.org/wiki/Substitution_reaction

    Substitution reactions in organic chemistry are classified either as electrophilic or nucleophilic depending upon the reagent involved, whether a reactive intermediate involved in the reaction is a carbocation, a carbanion or a free radical, and whether the substrate is aliphatic or aromatic. Detailed understanding of a reaction type helps to ...

  6. Electrophilic amination - Wikipedia

    en.wikipedia.org/wiki/Electrophilic_amination

    Electrophilic amination reactions can be classified as either additions or substitutions. Although the resulting product is not always an amine, these reactions are unified by the formation of a carbon–nitrogen bond and the use of an electrophilic aminating agent.

  7. Electrophilic substitution - Wikipedia

    en.wikipedia.org/wiki/Electrophilic_substitution

    This reaction is similar to nucleophilic aliphatic substitution where the reactant is a nucleophile rather than an electrophile. The four possible electrophilic aliphatic substitution reaction mechanisms are S E 1, S E 2(front), S E 2(back) and S E i (Substitution Electrophilic), which are also similar to the nucleophile counterparts S N 1 and ...

  8. Electrophilic halogenation - Wikipedia

    en.wikipedia.org/wiki/Electrophilic_halogenation

    Therefore, they are generated by adding iron filings to bromine or chlorine. Here is the mechanism of this reaction: The mechanism for bromination of benzene. The mechanism for iodination is slightly different: iodine (I 2) is treated with an oxidizing agent such as nitric acid to obtain the electrophilic iodine ("I +", probably IONO 2).

  9. Nucleophilic aromatic substitution - Wikipedia

    en.wikipedia.org/wiki/Nucleophilic_aromatic...

    Aromatic nucleophilic substitution. This reaction differs from a common S N 2 reaction, because it happens at a trigonal carbon atom (sp 2 hybridization). The mechanism of S N 2 reaction does not occur due to steric hindrance of the benzene ring. In order to attack the C atom, the nucleophile must approach in line with the C-LG (leaving group ...