Search results
Results from the WOW.Com Content Network
For the above isosceles triangle with unit sides and angle , the area 1 / 2 × base × height is calculated in two orientations. When upright, the area is sin θ cos θ {\displaystyle \sin \theta \cos \theta } .
In trigonometry, the law of cotangents is a relationship among the lengths of the sides of a triangle and the cotangents of the halves of the three angles. [1] [2]Just as three quantities whose equality is expressed by the law of sines are equal to the diameter of the circumscribed circle of the triangle (or to its reciprocal, depending on how the law is expressed), so also the law of ...
Cot-1, COT-1, cot-1, or cot −1 may refer to: Cot-1 DNA , used in comparative genomic hybridization cot −1 y = cot −1 ( y ), sometimes interpreted as arccot( y ) or arccotangent of y , the compositional inverse of the trigonometric function cotangent (see below for ambiguity)
hyperbolic cotangent " coth" (/ ... Web-based calculator of hyperbolic functions This page was last edited on 13 January 2025, at 01:34 (UTC). Text is ...
The angle opposite the leg of length 1 (this angle can be labeled φ = π/2 − θ) has cotangent equal to the length of the other leg, and cosecant equal to the length of the hypotenuse. In that way, this trigonometric identity involving the cotangent and the cosecant also follows from the Pythagorean theorem.
For arcoth, the argument of the logarithm is in (−∞, 0], if and only if z belongs to the real interval [−1, 1]. Therefore, these formulas define convenient principal values, for which the branch cuts are (−∞, −1] and [1, ∞) for the inverse hyperbolic tangent, and [−1, 1] for the inverse hyperbolic cotangent.
In trigonometry, the law of tangents or tangent rule [1] is a statement about the relationship between the tangents of two angles of a triangle and the lengths of the opposing sides. In Figure 1, a , b , and c are the lengths of the three sides of the triangle, and α , β , and γ are the angles opposite those three respective sides.
These equations are also known as the cofunction identities. [2] [3]This also holds true for the versine (versed sine, ver) and coversine (coversed sine, cvs), the vercosine (versed cosine, vcs) and covercosine (coversed cosine, cvc), the haversine (half-versed sine, hav) and hacoversine (half-coversed sine, hcv), the havercosine (half-versed cosine, hvc) and hacovercosine (half-coversed ...