enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Spherical geometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_geometry

    However, spherical geometry was not considered a full-fledged non-Euclidean geometry sufficient to resolve the ancient problem of whether the parallel postulate is a logical consequence of the rest of Euclid's axioms of plane geometry, because it requires another axiom to be modified.

  3. Spherical coordinate system - Wikipedia

    en.wikipedia.org/wiki/Spherical_coordinate_system

    In mathematics, a spherical coordinate system specifies a given point in three-dimensional space by using a distance and two angles as its three coordinates. These are the radial distance r along the line connecting the point to a fixed point called the origin; the polar angle θ between this radial line and a given polar axis; [a] and

  4. Sphere - Wikipedia

    en.wikipedia.org/wiki/Sphere

    The points on the sphere are all the same distance from a fixed point. Also, the ratio of the distance of its points from two fixed points is constant. The first part is the usual definition of the sphere and determines it uniquely. The second part can be easily deduced and follows a similar result of Apollonius of Perga for the circle.

  5. Coordinate system - Wikipedia

    en.wikipedia.org/wiki/Coordinate_system

    The spherical coordinate system is commonly used in physics. It assigns three numbers (known as coordinates) to every point in Euclidean space: radial distance r, polar angle θ , and azimuthal angle φ . The symbol ρ is often used instead of r.

  6. Antipodal point - Wikipedia

    en.wikipedia.org/wiki/Antipodal_point

    Many results in spherical geometry depend on choosing non-antipodal points, and degenerate if antipodal points are allowed; for example, a spherical triangle degenerates to an underspecified lune if two of the vertices are antipodal.

  7. Point (geometry) - Wikipedia

    en.wikipedia.org/wiki/Point_(geometry)

    In geometry, a point is an abstract idealization of an exact position, without size, in physical space, [1] or its generalization to other kinds of mathematical spaces.As zero-dimensional objects, points are usually taken to be the fundamental indivisible elements comprising the space, of which one-dimensional curves, two-dimensional surfaces, and higher-dimensional objects consist; conversely ...

  8. Great circle - Wikipedia

    en.wikipedia.org/wiki/Great_circle

    Any arc of a great circle is a geodesic of the sphere, so that great circles in spherical geometry are the natural analog of straight lines in Euclidean space.For any pair of distinct non-antipodal points on the sphere, there is a unique great circle passing through both.

  9. List of spherical symmetry groups - Wikipedia

    en.wikipedia.org/wiki/List_of_spherical_symmetry...

    Finite spherical symmetry groups are also called point groups in three dimensions. There are five fundamental symmetry classes which have triangular fundamental domains: dihedral, cyclic, tetrahedral, octahedral, and icosahedral symmetry. This article lists the groups by Schoenflies notation, Coxeter notation, [1] orbifold notation, [2] and order.