Search results
Results from the WOW.Com Content Network
In mathematical logic, model theory is the study of the relationship between formal theories (a collection of sentences in a formal language expressing statements about a mathematical structure), and their models (those structures in which the statements of the theory hold). [1]
Let M be a structure in a first-order language L.An extended language L(M) is obtained by adding to L a constant symbol c a for every element a of M.The structure M can be viewed as an L(M) structure in which the symbols in L are interpreted as before, and each new constant c a is interpreted as the element a.
Computable model theory is a branch of model theory which deals with questions of computability as they apply to model-theoretical structures. Computable model theory introduces the ideas of computable and decidable models and theories and one of the basic problems is discovering whether or not computable or decidable models fulfilling certain model-theoretic conditions can be shown to exist.
The approach applies the mathematical techniques of model theory to the task of syntactic description: a grammar is a theory in the logician's sense (a consistent set of statements) and the well-formed structures are the models that satisfy the theory.
In model theory and related areas of mathematics, a type is an object that describes how a (real or possible) element or finite collection of elements in a mathematical structure might behave. More precisely, it is a set of first-order formulas in a language L with free variables x 1 , x 2 ,..., x n that are true of a set of n -tuples of an L ...
Model theory is the study of the relationship between formal theories (a collection of sentences in a formal language expressing statements about a mathematical structure), and their models (those structures in which the statements of the theory hold). The aspects investigated include the number and size of models of a theory, the relationship ...
In the mathematical field of model theory, a theory is called stable if it satisfies certain combinatorial restrictions on its complexity. Stable theories are rooted in the proof of Morley's categoricity theorem and were extensively studied as part of Saharon Shelah's classification theory, which showed a dichotomy that either the models of a theory admit a nice classification or the models ...
Finite model theory is a subarea of model theory. Model theory is the branch of logic which deals with the relation between a formal language (syntax) and its interpretations (semantics). Finite model theory is a restriction of model theory to interpretations on finite structures, which have a finite universe.